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2 EXECUTIVE SUMMARY 

2.1 The Objective(s) of Request 

The objective of this briefing dossier is for the Critical Path Institute’s Type 1 Diabetes 
Consortium (T1DC) to achieve a qualification opinion for a new drug development tool for 
Type 1 Diabetes (T1D) through EMA’s qualification of novel methodologies for medicine drug 
development. This dossier contains the proposed context-of-use (COU) statement, data 
source description, modeling analysis methods and results that provide a quantitative basis 
to support the use of islet autoantibodies (AAs) to enrich subjects for inclusion in T1D 
prevention trials. An accelerated time failure model will provide the supporting evidence for 
the use of islet AAs anti-insulin AA (IAA), anti-glutamic acid decarboxylase 65 AA (GAD65), 
anti-insulinoma antigen-2 AA (IA-2), and zinc transporter 8 AA (ZnT8) as enrichment 
biomarkers in T1D prevention clinical trials. The presence of different numbers and 
combinations of islet AAs were analyzed in conjunction with other relevant sources of 
variability including, demographics, human leukocyte antigen (HLA) haplotype, first-degree 
relative (FDR), T1D status and blood glucose assessments. The specific sources of variability 
that were selected include baseline age, sex, blood glucose measurements from the 120-
minute timepoints of an Oral Glucose Tolerance Test (OGTT), and hemoglobin A1c (HbA1c) 
test. The process by which these sources of variability were selected is outlined in this briefing 
dossier. 

2.2 The Need and Impact of Proposed Clinical Novel Methodologies 

T1D is a chronic autoimmune disease that results from the destruction of insulin-producing 
beta cells (β-cells) in the islets of Langerhans of the pancreas. The ability of T1D patients to 
make insulin is impaired, and consequently patients are unable to regulate their blood glucose 
levels. T1D affects 3 million people in Europe (International Diabetes Federation 2019). The 
incidence of T1D is on the rise worldwide, particularly in children. In Europe, incidences vary 
between 0.2 and 0.5%, with steep rises in the number of children and young people with T1D 
in lower incidence countries like Hungary and Poland, catching up the high incidence countries, 
like Scandinavia, where stabilization seems to happen (Barkai et al. 2020; Szalecki et al. 
2018; Skrivarhaug et al. 2014). 

Insulin replacement therapy remains the cornerstone of treatment for T1D and is used to 
manage blood glucose levels. Diabetes-associated complications (nephropathy, neuropathy, 
retinopathy, and cardiomyopathy) arise from poor long-term glycemic control. Tight glucose 
control through optimal insulin therapy management can reduce the risk of developing 
diabetes-related complications (Writing Group for the DCCT/EDIC Research Group et al. 2015) 
but most patients fail to achieve their glycemic target (Foster et al. 2019). Although insulin 
therapy and blood glucose management provide substantial benefit to patients (Writing Group 
for the DCCT/EDIC Research Group et al. 2015), this approach does not target the underlying 
destructive autoimmune processes that drive disease pathogenesis. 

The challenges associated with the development of therapies to prevent or delay the onset of 
T1D are multifactorial and include a lack of qualified biomarkers that identify individuals at 
risk of developing T1D or can aid in quantifying the risk of conversion to a T1D diagnosis. 
There have been significant late-stage failures in the development of therapies in new-onset 
T1Dwhich have been attributed, in part, to two factors. First, there is a high degree of 
heterogeneity in the patient population and an inability to quantitatively describe the specific 
sources of variability that may contribute to this heterogeneity. Second, due to the nature of 
the disease, intervening in new-onset T1D may be too late to significantly delay or halt disease 
progression and preserve endogenous β-cell function. 
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Decades of research into the natural history of T1D has demonstrated that subjects at risk 
for developing T1D can be identified. Subjects that are FDR of T1D patients or express a 
specific HLA haplotype (HLA-DR3/3, DR4/4, DR3/4, DR3/X [X≠3], DR4/X [X≠4]) have been 
shown to be at risk for developing T1D. Further, the presence of multiple islet AAs including 
IAA, GAD65, IA-2, and ZnT8 have been shown to be robust biomarkers capable of predicting 
a clinical diagnosis of T1D (Hagopian et al. 2011). The summarized main finding of this work 
is that in individuals at risk of developing T1D (those with specific HLA haplotype or who are 
a FDR), the presentation of two or more islet AAs (A. G. Ziegler et al. 2013) will eventually 
lead to the onset of T1D over time and the rate of conversion to a T1D diagnosis is increased 
with a greater number of islet AAs (Sosenko et al. 2009; Veijola et al. 2016; Xu, Krischer, 
and Type 1 Diabetes TrialNet Study Group 2016). Multiple natural history studies (Hagopian 
et al. 2011; Mahon et al. 2009; Skyler et al. 2005; Insel et al. 2015) have been utilized to 
develop a staging classification guideline, endorsed by JDRF, American Diabetes Association 
(ADA), and the Endocrine Society, that aids in the description of T1D in its pre-diagnosis 
stages. This classification is a tool that provides a common language for the T1D community 
to discuss the stages preceding the clinical diagnosis of T1D and to build awareness among 
clinicians, as well as patients and their relatives at higher risk of progressing to a clinical 
disease (Insel et al. 2015). Similar natural history studies are ongoing in the general pediatric 
population (i.e. subjects without FDR or specific HLA risk haplotype) to assess the prevalence 
of the islet AAs and their relationship to T1D diagnosis (“ASK Research Program / 
Autoimmunity Screening for Kids / Denver, CO” n.d.; Kick et al. 2018; Raab et al. 2016; A. 
Ziegler et al. 2020). 

However, translating the findings from these natural history studies to comprehensively 
inform subject selection in T1D prevention trials is challenging due to the variability of the 
latency phase, defined as the time from presentation of multiple islet AAs to ultimate diagnosis 
of T1D. To utilize islet AAs as enrichment biomarkers in drug development, it is necessary to 
quantitatively determine if the islet AA combinations are statistically significant predictors of 
T1D diagnosis. Without this understanding, sponsors are unable to design informative clinical 
trials of appropriate and reasonable size, duration, and cost that will be capable of adequately 
evaluating potentially transformational therapies. 

In order to address this drug development need, the T1DC 1) acquired, remapped, integrated 
and curated existing patient-level data from observational studies and 2) evaluated the utility 
of islet AAs, including IAA, GAD65, IA-2, and ZnT8 as biomarkers to enrich subjects for 
inclusion in T1D prevention trials using a model-based approach. With the patient-level data 
available to the T1D Consortium’s team, this model-based approach considered other sources 
of variability including demographics, HLA-haplotype, FDR T1D status, blood glucose 
assessments, C-peptide levels, age-adjusted body mass index (BMI), and the various 
combinations of islet AA presentation. The output of this model-based approach is a 
quantitative description of time-varying probability of reaching a diagnosis of T1D that could 
be used to optimize subject enrichment strategies for T1D prevention trials aiming to delay 
or prevent T1D. 

Based on the methods and results outlined in this briefing dossier, the T1DC is seeking 
qualification opinion for islet AAs as enrichment biomarkers for T1D prevention clinical trials. 
This qualification will also help to de-risk drug development and streamline the review of new 
drug candidates for T1D. The T1DC believes qualification of these biomarkers is particularly 
important as there are currently many new marketing authorization applications seeking 
review. 
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2.3 Characteristics of the Proposed Novel Methodology 

Proposed Context-of-Use Statement 

In individuals at risk of developing T1D, the islet AAs can be used together with other patient 
features, as enrichment biomarkers to optimize the selection of individuals for clinical trials 
of therapies intended to prevent or delay the clinical diagnosis of T1D. The islet AAs proposed 
include IAA, GAD65, IA-2, and ZnT8. Additional patient features include sex, baseline age, 
blood glucose measurements from the 120-minute timepoints of OGTT and HbA1c levels. 

• General Area: 

Enrichment biomarkers for clinical trials focusing on the delay or prevention of the clinical 
diagnosis of T1D. 

• Target Population for Use of the Biomarkers: 

Individuals at risk of T1D, defined as being a FDR of a T1D patient, or having a specific 
HLA subtype of risk (HLA-DR3/3, DR4/4, DR3/4, DR3/X [X≠3], DR4/X [X≠4]). It is 
intended that positivity for two or more of the islet AAs be determined in this population, 
to be used as enrichment biomarkers for clinical trials focusing on the delay or prevention 
of the clinical diagnosis of T1D. 

• Stage of Drug Development for Use: 

All clinical efficacy evaluation stages of therapeutic interventions focused on the 
prevention or delay of T1D, including early signs of efficacy, proof-of-concept, dose-
ranging, and registration studies. 

• Intended Application: 

To utilize the islet AAs as enrichment biomarkers as a means of patient selection in clinical 
trials investigating therapies that are intended to prevent or delay the clinical diagnosis of 
T1D. These biomarkers, along with additional patient features, such as baseline HbA1c 
levels and the 120-minute timepoint from an OGTT, can be used as predictors to identify 
subpopulations at highest risk of a diagnosis of T1D during the course of T1D prevention 
clinical trials. 

2.4 Sources of Data and Major Findings  

As of May 2020, the T1DC has obtained three datasets, The Environmental Determinants of 
Diabetes in the Young (TEDDY), the TrialNet Pathway to Prevention Study (TN01) and the 
Diabetes Autoimmunity Study in the Young (DAISY).  The TEDDY and TN01 were aggregated 
to support the model-based qualification of islet AAs as enrichment biomarkers. This 
aggregated dataset was used to construct the statistical analysis plan presented in the T1DC’s 
May 2019 submission for qualification advice.  The developed model demonstrates that the 
islet AAs are statistically significant predictors of the time-varying probability of conversion to 
a diagnosis of T1D. Further when additional sources of variability, including baseline age, sex, 
blood glucose measurements from the 120-minute timepoints of OGTT, and HbA1c, are 
assessed with the islet AAs, it further improves the accuracy of predicting the time-varying 
probability of conversion to a T1D diagnosis. Since the May 2019 submission, the T1DC has 
acquired the data from DAISY which was reserved to externally validate the model. In 
summary, analysis of TN01, TEDDY, and DAISY, constitute data-driven evidence for using the 
presence of two or more islet AAs and other patient features as enrichment biomarkers for 
selection of subjects included in T1D prevention studies.  
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2.5 Overall Goal of the Present Submission 

The T1DC presents this briefing dossier to obtain the Agency’s Qualification Opinion on the 
proposed COU for the islet AAs as enrichment biomarkers for T1D prevention trials. The T1DC 
believe the Qualification Opinion will be critical for the acceleration of the development of 
drugs that prevent or delay the onset of T1D. 

2.6 Conclusion 

The developed model was shown to demonstrate that the presence of two or more islet AAs 
are statistically significant predictors of the time-varying probability of conversion to a 
diagnosis of T1D.  Furthermore, glycemic measurements within this multiple islet AA positive 
population were shown to further contribute as independent predictors thereby increasing the 
accuracy of predicting the time-varying probability of conversion to a T1D diagnosis. The 
T1DC team considers that this model provides the supporting evidence for the application 
islet AAs as enrichment biomarkers as defined by the context of use statement. 

3 BACKGROUND 

3.1 Regulatory History 

This dossier reports the result of the T1DC and Critical Path Institute’s analysis of islet AAs as 
enrichment biomarkers in clinical trials for the prevention or delay of T1D. Previous 
interactions between T1DC and EMA’s Scientific Advice Working Party (SAWP) are as follows:  

• May 2019: T1DC submitted a briefing dossier for qualification advice  
• September 2019: Face-to-face discussion meeting between SAWP and T1DC  
• October 2019: EMA issued T1DC qualification advice  
• March 2020: EMA issued Letter of Support for islet AAs as enrichment biomarkers for 

T1D prevention studies 
• June 2020: T1DC submitted briefing dossier for qualification opinion to SAWP 
• July 2020: T1DC received List of Issues from SAWP  

This submission now seeks a qualification opinion from EMA regarding the proposed novel 
methodology (islet AAs as enrichment biomarkers in clinical trials for the prevention or delay 
of T1D). A full and detailed description of the initial submission for qualification advice can be 
found in Appendix F. Following submission of this briefing dossier in June 2020, a List of Issues 
adopted by the SAWP during its 6-9 July 2020 meeting. The SAWP List of Issues included a 
request for the T1DC to address the first three issues separately in writing, while the 
remaining issues will be discussed during a discussion meeting with SAWP scheduled for the 
week of September 28,2020. The first three issues to be addressed in writing pertained to 
statistical notation of the model, exploration of alternative models by adding baseline age and 
sex in different combinations to the selected AFT model, and provision of “visual predictive 
check” style figures. As per the request, the written responses to these three issues are 
included in a separate document, as well as in Sections 4.3.6 and 4.3.7 of this document. The 
Methods and Results sections of this briefing dossier were subsequently updated based on 
feedback from the List of Issues, as were Appendix H and code files within the Modeling 
Analysis Zip file.  

T1DC’s previous regulatory history with FDA’s Biomarker Qualification Program (BQP) are as 
follows: 

• August 31, 2019: T1DC submitted Letter of Intent to FDA BQP 
• March 14, 2019: BQP issues a favorable Determination Letter accepting islet AAs as 

an enrichment biomarker into the BQP.  
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In its response letter, FDA suggested categorizing the islet AAs as susceptibility-risk markers 
for the enrichment of subjects in T1D prevention trials, rather than the T1DC’s initial 
prognostic biomarker categorization. The T1DC is currently preparing a Stage 2 Qualification 
Plan submission to FDA while it pursues a Qualification Opinion with EMA. A full and detailed 
description of FDA’s comments on the Letter of Intent submission can be found in Appendix 
G. 

3.2 Proposed Context-of-Use Statement 

Proposed Context-of-Use Statement 

In individuals at risk of developing T1D, the islet AAs can be used together with other patient 
features, as enrichment biomarkers to optimize the selection of individuals for clinical trials 
of therapies intended to prevent or delay the clinical diagnosis of T1D. The islet AAs proposed 
include IAA, GAD65, IA-2, and ZnT8. Additional patient features include sex, baseline age, 
blood glucose measurements from the 120-minute timepoints of OGTT and HbA1c levels. 

• General Area: 

Enrichment biomarkers for clinical trials focusing on the delay or prevention of the clinical 
diagnosis of T1D. 

• Target Population for Use of the Biomarkers: 

Individuals at risk of T1D, defined as being a FDR of a T1D patient, or having a specific 
HLA subtype of risk (HLA-DR3/3, DR4/4, DR3/4, DR3/X [X≠3], DR4/X [X≠4]). It is 
intended that positivity for two or more of the islet AAs be determined in this population, 
to be used as enrichment biomarkers for clinical trials focusing on the delay or prevention 
of the clinical diagnosis of T1D. 

• Stage of Drug Development for Use: 

All clinical efficacy evaluation stages of therapeutic interventions focused on the 
prevention or delay of T1D, including early signs of efficacy, proof-of-concept, dose-
ranging, and registration studies. 

• Intended Application: 

To utilize the islet AAs as enrichment biomarkers as a means of patient selection in clinical 
trials investigating therapies that are intended to prevent or delay the clinical diagnosis of 
T1D. These biomarkers, along with additional patient features, such as baseline HbA1c 
levels and the 120-minute timepoint from an OGTT, can be used as predictors to identify 
subpopulations at highest risk of a diagnosis of T1D during the course of T1D prevention 
clinical trials. 

4 METHODOLOGY AND RESULTS 

4.1 Introduction 

The purpose of this analysis is to develop a time-to-event model that describes the time-
varying probability of T1D onset in at-risk subjects. The developed model accounts for several 
predictors of T1D diagnosis within the defined patient population (individuals that are FDRs 
of a T1D patient, or who have an HLA haplotype of risk, defined as HLA-DR3/3, DR4/4, DR3/4, 
DR3/X [X≠3], DR4/X [X≠4]).  This model is intended to provide the necessary evidence to 
support the use of islet AAs to enrich trials with subjects who have a higher likelihood of 
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reaching T1D diagnosis over time based on the positivity of two or more islet AAs, 120-minute 
timepoint values from an OGTT, and HbA1c levels, for T1D prevention studies. 

The objectives of this analysis are: 

• To develop a time-to-event model to predict the time-varying probability of T1D diagnosis 
in individuals that are FDRs of a T1D patient, or who have an HLA haplotype of risk 

• To leverage the model to quantify the effect of various combinations of islet AAs positivity, 
together with glycemic measures on time-varying probability of T1D diagnosis  

• To allow the determination of optimal enrichment strategies in clinical trials intended to 
prevent or delay the onset of T1D 

• To develop an open-source accelerated failure time (AFT) survival model based in the R 
programming language to allow for the use of the developed model for clinical trial 
enrichment strategies 

4.2 Context-of-Use 

Proposed Context-of-Use Statement 

In individuals at risk of developing T1D, the islet AAs can be used together with other patient 
features, as enrichment biomarkers to optimize the selection of individuals for clinical trials 
of therapies intended to prevent or delay the clinical diagnosis of T1D. The islet AAs proposed 
include IAA, GAD65, IA-2, and ZnT8. Additional patient features include sex, baseline age, 
blood glucose measurements from the 120-minute timepoints of OGTT, and HbA1c levels. 

• General Area: 

Enrichment biomarkers for clinical trials focusing on the delay or prevention of the clinical 
diagnosis of T1D. 

• Target Population for Use of the Biomarkers: 

Individuals at risk of T1D, defined as being a FDR of a T1D patient, or having a specific 
HLA subtype of risk (HLA-DR3/3, DR4/4, DR3/4, DR3/X [X≠3], DR4/X [X≠4]). It is 
intended that positivity for two or more of the islet AAs be determined in this population, 
to be used as enrichment biomarkers for clinical trials focusing on the delay or prevention 
of the clinical diagnosis of T1D. 

• Stage of Drug Development for Use: 

All clinical efficacy evaluation stages of therapeutic interventions focused on the 
prevention or delay of T1D, including early signs of efficacy, proof-of-concept, dose-
ranging, and registration studies. 

• Intended Application: 

To utilize the islet AAs as enrichment biomarkers as a means of patient selection in clinical 
trials investigating therapies that are intended to prevent or delay the clinical diagnosis of 
T1D. These biomarkers, along with additional patient features, such as baseline HbA1c 
levels and the 120-minute timepoint from an OGTT, can be used as predictors to identify 
subpopulations at highest risk of a diagnosis of T1D during the course of T1D prevention 
clinical trials. 
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4.3 Methods 

4.3.1 Data 

The T1DC has obtained three datasets, the TN01, TEDDY, and DAISY studies, to support the 
qualification of islet AAs as enrichment biomarkers. TEDDY and TN01 were aggregated and 
used for model development and internal cross-validation.  Based on the results of the 
modeling analysis, these two datasets were considered sufficient for this purpose. Data from 
the DAISY study was acquired and used to perform external validation on the selected model. 
All studies are observational but certain features in their designs differ, including inclusion 
criteria and scheduled frequency of follow-up. A summary of the three studies can be found 
in Table 1.  

For the three studies, serum was collected from participants and was analyzed using radio-
ligand binding assays to determine the binary, qualitative output of seropositivity or negativity 
for an individual autoantibody. Assays were run in centralized labs that used either a series 
of positive controls derived from subjects with recently diagnosed T1D and negative controls 
based on healthy subjects or a series of reference standards provided by the National Institute 
of Diabetes and Digestive and Kidney Diseases (NIDDK) to establish cut points for determining 
if an individual was either seropositive or negative for a specific autoantibody. Full details for 
each assay can be found in Appendices A, B, and Addendum 1.  

These longitudinal studies monitored large numbers of subjects over many years for the 
presentation of the islet AAs, with the predominant result during this monitoring phase being 
seronegativity for individual islet AAs. To avoid the prohibitive cost of reassessing all 
seronegative results, the studies focused their reassessments on those subjects who 
demonstrated seropositivity for a particular islet AA. 

4.3.1.1 Studies 

Type 1 Diabetes TrialNet is an international consortium of clinical research centers that 
participate in studies designed to further the goals of prevention or delay of T1D. TrialNet 
began with the Pathway to Prevention Study (TN01) (previously called the natural history 
study) and has progressed into a clinical trial consortium that executes interventional trials in 
both T1D prevention and in newly diagnosed T1D patients. The overall objective of TN01 is 
to perform baseline and repeat assessments over time of the metabolic and immunologic 
status of individuals at risk for T1D to: (a) characterize their risk for developing T1D and 
identify subjects eligible for prevention trials, (b) describe the pathogenic evolution of T1D, 
and (c) increase the understanding of the pathogenic factors involved in the development of 
T1D. The primary outcome of TN01 is the development of diabetes as defined by the ADA 
based on glucose testing, or the presence of symptoms and unequivocal hyperglycemia.  

Participants for TN01 were selected by the presence of a FDR with T1D, as this has been 
shown to be a risk factor for the development of T1D. The criteria included (1) FDRs (age 1–
45 years) of T1D probands or (2) second- and third-degree relatives (age 1–20 years) of T1D 
probands (i.e., nieces, nephews, aunts, uncles, grandchildren, cousins, half-siblings). Based 
on these criteria, 211,230 subjects with positive FDRs were screened for the presence of islet 
AAs, as of November 2018. Between 2004-2009 subjects with the presence of one islet AA 
were considered eligible for follow-up. In 2009 the eligibility criteria for follow-up changed to 
the presence of two islet AAs.  Once subjects were selected for follow-up and opted in, they 
were monitored at six-monthly visits using OGTT, detection of islet AAs, and measurement of 
HbA1c levels. 
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Table 1. Overview TN01, TEDDY, and DAISY 
 

TN01 TEDDY DAISY 
Type of study: Observational Observational Observational 
Years running: 2004-Present 2004-Present 1993-Present 
Enrollment design: Ongoing screening and active 

enrollment 
Screening complete and fixed 

prospective cohort 
Screening complete and fixed 

prospective cohort 
Enrollment criteria: Ages 1-45 must have FDR 

with T1D*, ages 1-20 must 
have extended family 
member** with T1D 

Newborns (< 4 months old) with high-
risk HLA*** or FDR 

Newborns with high-risk HLA or 
FDR 

Sibling/offspring of individual 
with T1D, initial visit <7yo 

Number of subjects: 209,394 initial screening  
4,524 being followed 

(December 2018) 

361,518 initial screening  
8,667 in initial prospective cohort  

31,881 initial newborn 
screening 

2,547 in prospective cohort. 
Primary Study 
Outcome: 

T1D diagnosis  Appearance of one or more islet cell 
autoantibodies 

T1D diagnosis 

Secondary Study 
Outcome: 

Metabolic and autoantibody 
measurements 

T1D diagnosis Detection of islet autoantibodies 

Average age at 
entry: 

19.1 years 
(<3 months to >49 years) 

3 months Average age at entry for 
newborn screened: 1.0 yr 
Average age at entry for 

sib/offspring cohort: 2.31 yr 
Number of subjects 
who tested positive 
for 1 islet AA at or 
after screening: 

13,058†  794 364 

Number of subjects 
who tested positive 
for 2 islet AAs at or 
after screening: 

4,550 535 136 

 
* FDR is defined as a child, parent, or sibling. 
** Extended family member is defined as a cousin, niece, nephew, aunt, uncle, grandparent, or half-sibling. 
*** High risk HLA is defined as having an HLA genotype that is associated with higher incidences of HLA. In the TEDDY study these were HLA-
DR3/3, DR4/4, DR3/4, DR3/X [X≠3], DR4/X [X≠4] 
† Between 2004-2009 individuals with one islet AA were followed with six-monthly assessments. After 2009 this changed, and subjects 
required two or more islet AAs to be enrolled in the follow-up cohort 
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TN01 is still enrolling new subjects and following current subjects, however the TN01 data 
provided in this submission are locked as of December 2018. TN01 is providing TrialNet with 
an active patient ready cohort and collaborative clinical trial network to evaluate novel 
therapies for immune modulation and/or enhancement of β-cell proliferation and 
regeneration. These interventional studies (Battaglia et al. 2017) are investigating therapies 
designed to prevent T1D or therapies to preserve β-cell function in individuals with newly 
diagnosed T1D who have residual β-cell function. A full copy of the TN01 protocol can be 
found in the TN01 Manual of Operations (Appendix C). 

Inclusion criteria: TN01 is divided into three phases: Screening of subjects with positive FDRs 
(Phase 1), Baseline Risk Assessment (Phase 2) and Follow-up Risk Assessments (Phase 3). 
Phase 1 (211,230 individuals) involves overall screening and biochemical measurements of 
islet AAs to determine eligibility for the Phase 2 risk assessment (6,297 individuals). Once an 
individual is found to have two or more islet AAs (between 2004-2009 this was one more islet 
AA) they are offered to participate in Phase 3 where they are monitored at six-month intervals 
(4,524 individuals). 

Baseline assessment: Phase 1 and 2 will establish a baseline assessment which will include a 
categorization of FDR, an OGTT, measurement of HbA1c, testing for islet AAs, and HLA typing.  

Follow up assessments: Subjects will be seen at six-month intervals for the duration of the 
study for Phase 3 follow-up risk assessments. At each visit, tests will include OGTT, collection 
of blood for islet AA testing and measurement of HbA1c levels. 

Determination of islet autoantibody positivity: A full and detailed description of the 
performance characteristics and cutoffs used to assess seropositivity in each islet AA assay 
can be found in Appendix A and Addendum 1. Importantly, for any serum sample called 
positive, a follow-up confirmatory test is performed. For the TN01 study, a Laboratory 
Monitoring Committee (LMC) is responsible for monitoring assay accuracy and consistency of 
each TrialNet participating laboratory. Each laboratory participating in TN01 is reviewed by a 
LMC every six months; see Appendix A for most recent quality control reports for the Denver 
lab (dated July/August 2018). A brief summary of the quality control procedures for TN01 
follows: 

1. All samples are always run in duplicate. 
2. Three internal standard control samples (one high positive control, one low positive 

control, and one negative control) are included in each assay. A set of NIDDK standard 
samples for a standard curve are also included in each assay for harmonized GAD65 
and IA-2 assay protocols. All internal standard control samples and a NIDDK standard 
curve sample set are included in every four plates if more than four plates are being 
tested (Recommendation by NIDDK islet Autoantibody Harmonization Committee). 

3. Every positive result is confirmed by re-run in the different assay on a different day, 
again in duplicate. If the 2nd run comes out negative, which disagrees with the result 
of 1st run, a 3rd run will be necessary.  The average value of two runs, which agree 
(both positive or both negative), is the final result for data entry and report. Still, all 
results from these different assays are available in a database upon request. 

4. The lab does not re-test negative samples as it is rare to see negative results re-test 
as positive (i.e. the frequency is extremely low and since most screening samples are 
negative so it would be very costly to re-test. 
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Endpoint in protocol: T1D diagnosis as classified by the presence of unequivocal 
hyperglycemia including acute metabolic decompensation (diabetic ketoacidosis), or  
 
The following criteria must be met on two occasions: 
 

1. Signs and symptoms of diabetes plus casual plasma glucose concentration of ≥200 
mg/dL (11.1 mM). Casual is defined as any time of day without regard to time since 
last meal. The classic symptoms of diabetes include polyuria, polydipsia, and 
unexplained weight loss, or: 

2. Fasting Plasma Glucose (FPG) ≥126 mg/dL (7.0 mM). Fasting is defined as no caloric 
intake for at least 8 hours, or 

3. 2-hour Plasma Glucose (PG) ≥200 mg/dL (11.1 mM) during an OGTT. 
 

The Environmental Determinants of Type 1 Diabetes in the Young (TEDDY) is a 
prospective cohort study of 8667 children at high genetic risk for T1D, which seeks to identify 
environmental causes of T1D (Hagopian et al. 2006)). There are six clinical research centers: 
three in the U.S. (Colorado, Georgia/Florida, Washington), and three in Europe (Finland, 
Germany, and Sweden). Children were screened and recruited during infancy based on high-
risk HLA genotypes, with separate inclusion criteria for the general population (GP) children 
or FDR as described (Hagopian et al. 2011). Data for the high-risk HLA genotypes and FDRs, 
but not the GP, will be included as part of this submission.   

TEDDY is longitudinally prospective study assessing a broad spectrum of environmental 
factors that may contribute to the stimulus or stimuli that are involved in the immune initiation 
of T1D. An assessment of these environmental factors that will not be part of this submission, 
include identification of infectious agents, dietary factors, or other environmental agents, 
including psychosocial factors. Of participants, 89% had no family history of T1D. Participants 
are monitored prospectively with study visits every three months for the first four years, and 
every six months thereafter to age 18. All children who are persistently positive for any islet 
AA are monitored every three months until the age of 15 years or diagnosis of T1D. As of 
November 2018, 9.1% of the participants had developed at least one islet AA; 3.8% had 
developed T1D and thus reached study endpoint. Of the original cohort who have not reached 
the study endpoint, 68% are still participating in follow-up. TEDDY data provided in this 
submission are locked as of June 2018. A full copy of the TEDDY protocol can be found in the 
TEDDY Manual of Operations (Appendix D). 

Inclusion criteria: 8668 new-born subjects (0-3 months) were screened for high-risk HLA 
genotypes. High-risk HLA types in TEDDY are classified as HLA-DR3/3, DR4/4, DR3/4, DR3/X 
[X≠3], DR4/X [X≠4]. A detailed definition of the high-risk HLA typing assignments can be 
found in Hagopian et al. 2011.  

Baseline assessment: Once a subject has been deemed HLA eligible via baseline assessment, 
and subjects’ guardians have consented, the subject is entered into the follow-up cohort.  

Follow-up assessments: Subjects are assessed every three months for the first four years of 
life with a variety of physiological lab tests to determine the environmental factors effecting 
the immune-initiation of T1D. For this submission, only the positivity for islet AAs and blood 
glucose measures were considered. If a subject becomes positive for an islet AA they will 
continue on a three-month visit schedule until 15 years of age or the diagnosis of T1D.  If a 
subject is negative for islet AAs after the first four years, the subject will shift to a six-month 
assessment schedule but will shift back to a quarterly assessment if they become islet AA 
positive.  OGTTs will only be done on every subject that is >3 years of age with two islet AAs. 
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Determination of islet autoantibody positivity: A full and detailed description of the 
performance characteristics and cutoffs used to assess seropositivity in each islet AA assay 
can be found in Appendix A and Addendum 1. Importantly, for any serum sample determined 
to be positive, a follow-up confirmatory test is performed. In TEDDY, two centralized labs are 
utilized to confirm samples that are positive for an individual islet AA. Samples that are tested 
as positive in Denver are sent to Bristol for confirmation, and samples tested as positive in 
Bristol are sent to Denver for confirmation. According to the study protocol, each laboratory 
should repeat all positive samples internally before reporting positive or negative, and will 
measure twice, if specific islet AA positives are confirmed, and up to three times if there is a 
discrepancy between the initial positive result and the second determination (2/3 internal lab 
reported as positive, with mean of consensus positives or negatives reported in World Health 
Organization (WHO) units. Results are then sent electronically to the Data Coordinating 
Center. The Data Coordinating Center then sends the NIDDK repository the ID for all positive 
samples and a subset of negative samples (5%), and the repository sends the second aliquot 
of serum to the alternate reference laboratory for confirmation of the positive result. 

Endpoint(s) in protocol: The first endpoint in TEDDY is the development of an islet AA.  

The final endpoint in TEDDY is T1D diagnosis, classified by the following ADA criteria, which 
must be met on two occasions (unless criteria 4 is present): 

1. Casual (any time of day without regard to time since last meal) plasma glucose >= 
200 mg/dL, if accompanied by unequivocal symptoms (i.e. polyuria, polydipsia, 
polyphagia, and/or weight loss.), or 

2. Fasting (no caloric intake for at least 8 hours) plasma glucose >= 126 mg/dL, or 
3. 2-hour plasma glucose >=200 mg./dL OGTT.  Glucose dose is determinant on body 

weight to a maximum of 75 grams, or 
4. Unequivocal hyperglycemia with acute metabolic decompensation (i.e. ketoacidosis) 

Unless criterion 4 is present or the fasting glucose is >=250 mg/dL (at the bedside or in the 
local laboratory on the day of testing), it is preferred that at least one of the two testing 
occasions involve an OGTT. If the first criterion met is #3 (i.e. by the 2-hour OGTT value) the 
OGTT should be repeated within 60 days. It is essential that every effort be made to obtain 
the necessary tests to establish the diagnosis of diabetes. Subjects will be instructed to eat a 
balanced diet in the days leading up to the OGTT. 

Diabetes Autoimmunity Study in the Young (DAISY) is a prospective cohort study of 
2547 children who are at increased genetic risk for developing T1D. DAISY seeks to 
understand the environmental triggers for islet autoimmunity and progression to T1D. 
Children were screened and recruited in two groups (1) during infancy based on high-risk HLA 
genotypes or (2) during early childhood based on first-degree relative (FDR) status as 
described (Rewers, Norris, et al. 1996; Rewers, Bugawan, et al. 1996). 

Children in DAISY were monitored longitudinally for over 20 years, assessing a variety of 
environmental factors that may be involved in the development of islet autoimmunity. These 
included assessment of prenatal exposures, birth events, growth and puberty, dietary 
assessment, smoke exposure, daycare exposure, physical activity assessment, and biological 
samples for assessment of biomarkers and infectious agents (blood, urine, saliva, throat and 
rectal swabs). 

Participants were assessed at 9, 15 and 24 months of age and then annually thereafter. Those 
who developed islet autoimmunity were monitored every 6 months. Participants who were 
positive for more than one islet autoantibody were requested to follow up every 3 months 
until diagnosis of T1D. As of January 2020, 9.2% of the participants had developed at least 
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one islet autoantibody and 4.2% had developed T1D. Of the original cohort, 42% were still 
engaged in follow-up. DAISY data provided in this submission are locked as of June 30, 2017.  

More information related to the assays can be referenced in Addendum 1 to Appendix A & B. 
The protocol for DAISY can be found in Appendix E. 

Inclusion criteria:  

1) General Population Cohort: Children born November, 1993 through August, 2004 
at St. Joseph’s Hospital, Denver were recruited in the hospital within days of birth. 
Cord blood was screened for high-risk HLA genotypes. All children with high- or 
moderate-risk HLA genoptypes: DR3/4,DQB1*0302, DR3/3, DR4/4 DQB1*0302 or 
DR4,DQB1*0302/X were invited to participate in follow-up (X≠DR3 or 
DR4,DQB1*0302). The study enrolled 1555 eligible children, of whom 131 had a 
first-degree relative with T1D. Included in this total were also 176 children with 
the DR3/x genotype that is neutral for T1D risk, but a susceptibility genotype for 
celiac disease. These children could have their first DAISY visit between 9-24 mo 
of age, while the remainder of this cohort had the initial visit at 9 mo of age. 

2) Family History Cohort (FDR): Starting February 11, 1994, young siblings and 
offspring of a person with T1D were recruited from: i) families of children diagnosed 
with T1D below age 18, in Colorado, between 1978 and 1991 (Colorado IDDM 
Registry); ii) families of  children with T1D seen in the Barbara Davis Center or The 
Children's Hospital Colorado after 1991; and iii) media publicity. The FDR (n=995) 
were invited to participate regardless of their HLA genotype. Most of the FDRs had 
their initial DAISY visit during the initial 12 months of age; however, the initial visit 
could be as late as up to 4 y and, in 1993-1995, as late as up to 6.9 y of age. 

Exclusion criteria: All: (1) severe co-existent condition, (2) parents both non-English speaking 
(3) refused consent for long-term storage of data and specimen. General Population 
Newborns: No cord blood available.  

Baseline assessment: Once a subject has been deemed HLA eligible via baseline assessment, 
and subjects’ guardians have consented, the subject is entered into the follow-up cohort.  

Follow-up assessments: Participants were assessed at 9, 15 and 24 months of age and then 
annually thereafter. Participants were assessed for a variety of environmental factors that 
may be involved in the development of islet autoimmunity. For this submission, only the 
longitudinal islet AA and blood glucose measures will be considered. If a subject becomes 
positive for an islet AA they will continue on a 6 month visit schedule until the diagnosis of 
T1D. Participants who were positive for more than one islet autoantibody were requested to 
follow up every 3 months until diagnosis of T1D. All islet autoantibody positive participants 
had HbA1c at each visit. Any participant with 2 or more islet autoantibodies 3 years or older 
was offered an OGTT every 6 months. 

Determination of islet autoantibody positivity: Islet-autoimmunity was assessed from serum 
sample collected at each clinic visit for radio-binding assay for GAD65, IAA, IA-2 at every 
visit. Beginning in 2012, participants positive for any other islet antibody or who developed 
T1D were also tested for ZnT8. Additionally, the last sample collected for all 2547 participants 
was tested for ZnT8 and if positive, all previous samples were tested to determine age of 
seroconversion. DAISY participants were tested by radioimmunoassay for GAD65, IAA and 
IA-2. All available samples from children who were ever positive for any of the above 
autoantibodies or who developed T1D were tested for ZnT8 as previously described (Wenzlau 
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et al. 2007). Additionally, the last sample collected for all 2547 participants was tested for 
ZnT8, and if positive, all previous samples were tested to determine the age of 
seroconversion. Three children who were positive only for ZnT8 were identified in this way. 
For any serum sample determined to be positive, a follow-up confirmatory test is performed. 
Additionally, 10% of negative samples are retested.  

Endpoint(s) in protocol: The first endpoint in DAISY is development of an islet AA.  

The final endpoint in DAISY is T1D diagnosis, classified by the following ADA criteria that must 
be met on two occasions (unless criteria 4 is present): 

1. Casual (any time of day without regard to time since last meal) plasma glucose >= 
200 mg/dL, if accompanied by unequivocal symptoms (i.e. polyuria, polydipsia, 
polyphagia, and/or weight loss.), or 

2. Fasting (no caloric intake for at least 8 hours) plasma glucose >= 126 mg/dL, or 
3. 2-hour plasma glucose >=200 mg./dL OGTT.  Glucose dose is determinant on body 

weight to a maximum of 75 grams, or 
4. HbA1c ≥ 6.5% 
5. Unequivocal symptoms of hyperglycemia 

Participants who were diagnosed by a non-study physician outside of the study are included 
with date of diagnosis and clinical data when available. 

4.3.2 Derivation of Analysis Set and External Validation Set  

The studies TN01, TEDDY, and DAISY are observational studies focused on monitoring 
subjects at risk for developing T1D. To perform an analysis using data from these studies, a 
subset of common variables from all possible variables in each dataset was constructed.  The 
subset of individuals with the common variables, termed the analysis set, were collectively 
used to inform the modeling analysis for prediction of T1D diagnosis.  Based on prior 
knowledge, subject features relevant prior to T1D diagnosis were selected as part of the 
analysis set.  The list of patient features included in the analysis set were: 

• Presence of islet AAs (IAA, GAD65, IA-2, and ZnT8) measured as a binary variable of 
either seropositivity or seronegativity  

• Blood glucose measurements from the 0 and 120-minute timepoints of OGTT tests 
• HbA1c measurements 
• Demographic information (sex, baseline age, FDR status) 
• HLA subtype 

In the TN01, TEDDY, and DAISY protocols, the diagnosis of T1D was a study endpoint. The 
diagnostic criteria pre-specified for each study differed slightly, but each were based on the 
ADA criteria. Detailed descriptions of the pre-specified diagnosis criteria for each study can 
be found in Section 4.3.1.1 and in the full TN01, TEDDY, and DAISY protocols (Appendices C, 
D, and E, respectively).  Efforts were then taken to identify and categorize the diagnosis data 
for the individuals in the analysis set and validation set, 570 diagnoses in 2,061 individuals 
(Table 2). Table 2 shows a hierarchical breakdown of diagnosis data for subjects present in 
the analysis set. Data from the three studies showed records of T1D diagnoses that did not 
fulfill the diagnosis criteria outlined in each study (see Table 2 C - H). Although the T1D 
diagnoses in categories C-H in Table 2 are not ADA aligned, they were confirmed by a clinician 
investigator in the TN01, TEDDY, and DAISY studies and were included in the modeling 
analysis. 
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Table 2. Patient features at recorded diagnosis times in each study 

 TN01 TEDDY DAISY Total 

n % N % n % n % 
Individuals with a 
T1D diagnosis in 
analysis set: 

398 100 153 100 17 100 570 100 

A. 2 positive 
OGTT* 

98 24.6 37 24.2 0 0 135 23.7 

B. Ketoacidosis/Hos
pitalized at 
diagnosis 

115 28.9 73 47.7 0 0 188 33.0 

C. 1 positive OGTT 
+ other positive 
glucose test**** 

12 3 16 10.5 2 15.8 31 5.4 

D. 1 positive 
Fasting** + 
positive 
HbA1c*** 

20 5 2 1.3 0 0 22 3.9 

E. Positive HbA1c 48 12.1 5 3.3 4 21.1 57 10.0 

F. Any positive 
glucose test 

71 17.8 5 3.3 3 21.1 80 14.0 

G. Insulin 
prescribed 

18 4.5 0 0 0 0 18 3.2 

H. Only clinician 
confirmed 

0 0 0 0 3 15.8 3 0.5 

I. Diagnosis after 6 
years – 
considered 
censored 

15 3.8 15 9.8 5 26.3 35 6.1 

Individuals without a 
T1D diagnosis in the 
analysis set: 

1271 NA 200 NA 17 NA 1491 NA 

Total number of 
individuals in analysis 
set: 

1669 NA 353 NA 36 NA 2061 NA 

* Positive OGTT is defined by the ADA as >= 200 mg/dL at 2 hours after oral glucose dose 
delivery or >=126 mg/dL at the time of oral glucose dose delivery. 

** Positive Fasting Glucose is defined as >= 126 mg/dL after 8 hours of fasting. 

*** Positive HbA1c is defined as >= 6.5%. 

**** Other positive glucose test may include any of the above as well as Random Glucose, 
defined as >= 200 mg/dL without previous fasting. 
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4.3.2.1 Definition of Baseline Used for Analysis Set  

Only baseline information was used for the modeling analysis. Details regarding consideration 
of longitudinal analyses are located in Section 4.3.3.3. 

The precise definition of baseline used for the analysis set is the first record, i.e. timepoint, 
for each individual in which the following criteria are satisfied: 

• Presence of any two or more islet AAs 
• Complete, i.e. non-missing information for OGTT (0 and 120-minute timepoints, HbA1c 

measurements, age, sex 

As part of this derived baseline definition, all variables dependent on the visit day were 
adjusted. This involved adjusting the age at study entry, diagnosis timing, and last-recorded 
visit to be based on the newly defined baseline visit day, now labeled as day zero.   

The rationale for selecting individuals with only two or more islet AAs is based on the utility 
of the biomarker for drug development. Individuals with one or fewer islet AAs at baseline 
have significantly longer expected times to T1D diagnosis. Evidence for this is supported by 
examining the risk of T1D diagnosis stratified by using only the number of islet AAs present 
at the first patient record, including zero (see Appendix H Figure 1). For completeness, a 
supplementary analysis was conducted to assess the feasibility of modeling individuals with 
one islet AA (see Section 4.3.3.4). 

4.3.2.2 Islet AAs as Binary Predictors of T1D Diagnosis 

In all three studies, the raw islet AA levels were available. However, as discussed in Section 
4.3.1 and Appendices A, B, and Addendum 1, the assays for IAA, GAD65, IA-2, and ZnT8 are 
only being used to establish the presence or absence for each islet AA, not the continuous 
quantitative value, as this binary assessment is in line with the fit-for-purpose application of 
these  assays.    

To use islet AAs as binary predictors in the model, the islet AAs were represented using 
dummy variables. Using the requirement that two or more islet AAs must be present, an 
individual in the analysis subset has exactly one of eleven possible combinations of the four 
different islet AAs.  The binary absence or presence of the islet AAs is then interpreted as one 
covariate with 11 mutually exclusive levels in which each level is individually assessed for its 
risk of T1D prediction.   

4.3.2.3 Baseline Covariates 

Using the definition of the derived baseline as described in the previous section, the baseline 
covariates evaluated and tested as predictors in the time-to-event model are listed in the 
following table (Table 3) in terms of their notation and numerical definition.  

All continuous covariates were standardized, i.e. computed as (original value – mean(value))/ 
(standard deviation of original values), and OGTT values were first log transformed.  The 
subscript ‘s’ denotes this standardization.  

The final covariates included in the model are listed in Section 4.4.2 after being assessed for 
their predictive power, and potential collinearity and associations with other covariates. 
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Table 3. Covariates evaluated 

Notation Description of covariate at derived 
baseline 

Type 

𝑿𝑿𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆_𝐈𝐈𝐈𝐈𝐈𝐈 Positivity for GAD65, IAA  Binary  
𝑿𝑿𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆_𝐈𝐈𝐈𝐈−𝟐𝟐 Positivity for GAD65, IA-2  Binary  
𝑿𝑿𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆_𝐙𝐙𝐙𝐙𝐙𝐙𝐙𝐙 Positivity for GAD65, ZnT8  Binary  
𝑿𝑿𝐈𝐈𝐈𝐈−𝟐𝟐_𝐈𝐈𝐈𝐈𝐈𝐈 Positivity for IA-2, IAA  Binary  
𝑿𝑿𝐈𝐈𝐈𝐈−𝟐𝟐_𝐙𝐙𝐙𝐙𝐙𝐙𝐙𝐙 Positivity for IA-2, ZnT8  Binary  
𝑿𝑿𝐈𝐈𝐈𝐈𝐈𝐈_𝐙𝐙𝐙𝐙𝐙𝐙𝐙𝐙 Positivity for IAA, ZnT8  Binary  

𝑿𝑿𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆_𝐈𝐈𝐈𝐈𝐈𝐈_𝐙𝐙𝐙𝐙𝐙𝐙𝐙𝐙 Positivity for GAD65, IAA, ZnT8  Binary  
𝑿𝑿𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆_𝐈𝐈𝐈𝐈𝐈𝐈_𝐈𝐈𝐈𝐈−𝟐𝟐 Positivity for GAD65, IAA, IA-2  Binary  
𝑿𝑿𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆_𝐈𝐈𝐈𝐈−𝟐𝟐_𝐙𝐙𝐙𝐙𝐙𝐙𝐙𝐙 Positivity for GAD65, IA-2, ZnT8  Binary  
𝑿𝑿𝐈𝐈𝐈𝐈−𝟐𝟐_𝐈𝐈𝐈𝐈𝐈𝐈_𝐙𝐙𝐙𝐙𝐙𝐙𝐙𝐙 Positivity for IA-2, IAA, ZnT8 Binary 

𝑿𝑿𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆_𝐈𝐈𝐈𝐈−𝟐𝟐_𝐈𝐈𝐈𝐈𝐈𝐈_𝐙𝐙𝐙𝐙𝐙𝐙𝐙𝐙 Positivity for GAD65, IA-2, IAA, ZnT8 Binary 
𝑿𝑿𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 Flag for being in TN01 or TEDDY Binary 
𝑿𝑿𝑯𝑯𝑯𝑯_𝑯𝑯𝑯𝑯𝑯𝑯 Flag for high risk HLA subtype* Binary 
𝑿𝑿𝑭𝑭𝑭𝑭𝑭𝑭 Flag for first-degree relative with T1D ** Binary 
𝑿𝑿𝐒𝐒𝐒𝐒𝐒𝐒 Male or female Binary 
𝑿𝑿𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃_𝒔𝒔 Age  Continuous 
𝑿𝑿𝑩𝑩𝑩𝑩𝑩𝑩_𝒔𝒔 Body mass index  Continuous 
𝑿𝑿𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯_𝒔𝒔 HbA1c test result (%) Continuous 
𝑿𝑿𝑳𝑳𝑳𝑳𝑳𝑳_𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮_𝒔𝒔 Log transformed and standardized and 0-

minute results from OGTT  
Continuous 

𝑿𝑿𝑳𝑳𝑳𝑳𝑳𝑳_𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮_𝒔𝒔 Log transformed and standardized and 
120-minute results from OGTT  

Continuous 

* High-risk HLA is defined in Section 4.3.3.2  
** In TN01, the actual FDR was listed, and required a derivation into a binary outcome 
for the FDR status. 

 

4.3.2.4 Timing of Diagnosis and Removing likely T1D Subjects 

A variable was derived, denoted T_event, defined as either the time at which a T1D diagnosis 
occurred for individuals who had a recorded diagnosis, or the last recorded visit day for 
individuals with no recorded diagnosis time. For individuals with no recorded diagnosis, 
T_event is considered the right-censored time, since the event of T1D diagnosis is 
unobserved. 

The analysis set based on the derived baseline includes 168 individuals with OGTT and/or 
HbA1c values that satisfy the ADA criteria for likely T1D (Fasting Blood Glucose >= 126 
mg/dL, Stimulated Blood Glucose >= 200 mg/dL, HbA1c >= 6.5%), but were not assigned a 
diagnosis at that time.  To avoid bias in the modeling analysis, these individuals were counted 
as false negative and removed from the data representing a reduction in total diagnoses of 
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146. This censoring resulted in a final total of 551 diagnosis and 2,022 subjects in the analysis 
set from TN01 and TEDDY and is reflected in Table 2. 

4.3.2.5 Missing Data, Imputations, and Right Censoring  

The definition of the derived baseline described in Section 4.3.2.1 necessarily excludes all 
individuals with missing information for OGTT (0 and 120-minute timepoints), HbA1c, sex and 
age.  Therefore, no imputations were required for these variables. In the case of FDR status 
and HLA subtype, entry criteria differed between TEDDY and TN01 regarding these variables 
as stated in Section 4.3.1 resulting in missing information in both variables.  Additionally, BMI 
had significant missing information (Section 4.3.3.1).  Each of these covariates were 
nonetheless evaluated for their predictive power, but were not significant predictors and 
therefore dropped (Section 4.4.1.1). Therefore, in the final modeling analysis, no imputations 
were performed.   

Of the total 551 diagnoses in the analysis set, 30 diagnoses were reached after 6 years. For 
the parametric modeling approach used in the modeling analysis, an estimate of the baseline 
hazard function is needed, which is sensitive to sparse information at later diagnosis times.  
Because of this, diagnosis timing was censored at six years, so that any individual with a 
diagnosis after six years is considered right-censored with no diagnosis.  This approach helps 
numerically stabilize the estimate of the hazard function and improves model fitting.  The 
approach is further supported due to the lack of importance of accurately predicting diagnoses 
several years out as such scenarios are not likely for T1D trials of reasonable duration. 

4.3.3 Data Analysis 

Comprehensive tabulation and visualization of the data contained in the analysis set were 
performed for reference.  Data summaries for the covariates and the diagnosis information 
for both TN-01 and TEDDY are shown in Table 4.  The distribution of diagnosis by islet AA 
combination are shown in Table 5, and the distribution of diagnosis by each of the continuous 
covariates are shown in Figure 1. Survival plots were created to display the time-varying 
incidence of T1D stratified by the covariates in Table 3, shown Appendix H Figure 2-21. These 
figures show the distribution of right-censored events and the number of individuals at risk 
by year, which is important for understanding potential informative censoring.     

Additional data analysis tasks were done to support the current modeling or to assess if other 
modeling analyses could be carried out. These included 1) examining the longitudinal 
information of the islet AAs and the glycemic markers to assess the use of time-varying 
covariates (Section 4.3.3.2); 2) harmonizing the HLA data across both studies to ensure 
interoperability; 3) examining the data in individuals with one islet AA to identify potential 
predictors to T1D diagnosis in shorter durations (<3 years), and Study specific data 
summaries (Section 4.3.3.3). 

4.3.3.1 Data Summaries of TN-01 and TEDDY Analysis Set 

In the analysis set, a total of 2,022 subjects were included with complete information for islet 
AA positivity, age, sex, HbA1c, and 0 and 120- minute timepoints of OGTT. The values of the 
covariates of interest are shown by study in Table 4. The number of individuals by study for 
each islet AA combination and the number of diagnoses for that combination are shown in 
Table 5. Information on FDR, HLA risk group, and BMI contained missing information and is 
summarized in Table 4. The distributions of continuous covariates (BMI, 0 and 120-minute 
timepoint OGTT, HbA1c, age) are summarized in Figure 1. The distributions of continuous 
covariates (BMI, 0 and 120-minute timepoint OGTT, HbA1c, age) based on AA combinations 
are available in Appendix H figure 22-26. 
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Table 4. Data summary of covariates and diagnoses by study for analysis set 

Study TN01 TEDDY 

 Value  % Missingness Value  % Missingness 

Subjects 1669 - 353 - 

Age at Derived 
Baseline (sd) 

13.0 years 
(10.0) 

0 5.7 years 
(2.5) 

0 

Sex (% Female) 45.5% 0  41.6% 0.06 
Number of Islet AA 

measurements 
1669 0 353 0 

Has FDR % 1519 9% 65 0 

Mean 0 Min OGTT in 
mg/dL (sd)  

88.9 (9.7) 0 87.0 (8.9) 0 

Mean 120 Min OGTT in 
mg/dL (sd) 

120.3 
(29.6) 

0 108.1 
(24.0) 

0 

HbA1C % (sd) 5.1 (0.3) 0 5.2 (0.2) 0 

Number of HLA 
Measurements 

1622 2.8 351 0.6 

Mean BMI 21.2 (8.5) 67.6% 16.5 (2.4)  3.1% 
Diagnoses 383 NA 138 NA 

 

Table 5. T1D diagnoses in the analysis set by autoantibody combination 
 

TEDDY TN01 
Islet AA 
combination  

Subjects Diagnoses % Conversion Subjects Diagnoses % Conversion 

GAD65_IA-2 34 15 44% 150 35 23% 
GAD65_IA-2_IAA 28 13 46% 64 16 25% 
GAD65_IA-
2_IAA_ZnT8 

74 39 53% 280 83 30% 

GAD65_IA-
2_ZnT8 

24 12 50% 315 85 27% 

GAD65_IAA 74 15 20% 290 37 13% 
GAD65_IAA_ZnT8 26 9 35% 164 28 17% 
GAD65_ZnT8 41 3 7% 233 36 15% 
IA-2_IAA 10 6 60% 16 4 25% 
IA-2_IAA_ZnT8 24 18 75% 51 20 39% 
IA-2_ZnT8 12 5 42% 71 32 45% 
IAA_ZnT8 6 3 50% 35 7 20% 
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Figure 1 A - E. Continuous covariates stratified by diagnoses 
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4.3.3.2 HLA Harmonization  

In TEDDY, the HLA subtype was reported as one of the following coded values: HLA-DR3/3, 
DR4/4, DR3/4, DR3/X [X≠3], DR4/X [X≠4]. These five HLA haplotypes indicate high-risk 
categories that were used as enrollment criteria for the TEDDY prospective cohort (Hagopian 
et al. 2011).  The TN01 enrollment criteria were based on the presence of a FDR with T1D. 
Individuals that entered TN01 had the option of being assessed for their HLA status, but not 
all participants were evaluated.  For TN01 individuals in the analysis set that have a 
determined HLA status, the corresponding coded value of HLA risk used in TEDDY was derived.  
Any remaining HLA haplotypes in TN01 that did not correspond to the coded values in TEDDY 
were used to define an alternate risk category for the definition of the covariate assessed in 
the modeling analysis (Table 6). 

Table 6. HLA Risk Categories 

HLA category TN01 TEDDY High* or 
Alternate 

Risk   
DR4*030X/0302*DR3*0501/0201 0 178 High 
DR4*030X/0302*DR4*030X/0302 0 80 High 
DR4*030X/0302*DR4*030X/020X 2 0 High 
DR4*030X/0302*DR8*0401/0402 42 49 High 
DR4*030X/0302*DR1*0101/0501 20 6 High 

DR4*030X/0302*DR13*0102/0604 53 5 High 
DR4*030X/0302*DR4*030X/0304 0 0 High 
DR4*030X/0302*DR9*030X/0303 6 0 High 
DR3*0501/0201*DR3*0501/0201 81 33 High 
DR3*0501/0201*DR9*030X/0303 14 0 High 

All others 1070 0 Alternate  
Missing 47 2 NA 

*High-risk categories used as enrollment criteria for the TEDDY prospective cohort (Hagopian 
et al. 2011).   

 

4.3.3.3 Assessment of Time-Varying Covariates  

The longitudinal information for islet AA positivity and the glycemic markers were assessed 
for their potential to support a time-to-event model utilizing time-varying covariates.  A key 
assumption of such a model is that the time-varying covariates have measurements at the 
same time of the event, or within a relatively small difference of time so that it is reasonable 
to assume the timing of measurements are equal.  In the case of the islet AAs, the missing 
longitudinal information was assessed by measuring the time from the last islet AA 
measurement to the diagnosis time.  The distribution of these times is shown in Figure 2.  
Between both studies, approximately 50% of the individuals have gaps of timing from their 
last islet AA measurement to diagnosis over six months.  The use of binary time-varying 
covariates for islet AA positivity would, therefore, require removal of a significant portion of 
the data.  A similar situation arises for OGTT and HbA1c measurements as shown in Figure 2. 
It is concluded then that the use of time-varying covariates is not feasible.  
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Figure 2. Distribution of time difference between T1D diagnosis and covariates 
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4.3.3.4 Assessing Predictors in Individuals with One Islet AA 

Whether the population of individuals with one islet AA could be included in the model was 
assessed by analyzing whether such individuals have features predictive of risk to T1D. For 
TEDDY there is a complete history of individuals with one islet AA as the subjects are followed 
from birth. The inclusion criteria for TN01 required individuals to have two or more islet AA 
before OGTT and HbA1c assessments would be made. Therefore, robust information regarding 
the glycemic measures for subjects with one islet AA is not available for the modeling purposes 
outlined in this submission. Table 7 shows diagnosis information for individuals with one islet 
AA at the earliest record available in the data.  The percent of individuals with one islet AA 
who go onto a diagnosis was 6.5%. The diagnosis event rates for the one islet AA population 
are low which would make recruitment of these subjects to T1D prevention studies impractical 
in contrast to those with two or more islet AAs. 

Table 7. Diagnosis information for individuals with varying number of islet AAs 

Category Subjects* Diagnoses 
% 

Conversion 
to T1D 

Mean 
Time to 
Dx (sd)  

1 islet AA 9,450 619 6.5 3.09 
(2.81) 

2 islet AA 2,317 598 25.8 2.16 
(2.19) 

3 islet AA 1,406 406 28.9 1.92 
(2.2) 

4 islet AA 635 200 31.5 1.66 
(2.07) 

*Note the subject numbers captured in t 

4.3.4 Modeling Analysis Methodologies  

As per the original statistical analysis plan, the first approach was to analyze predictors of 
T1D diagnosis using a Cox proportional hazard (PH) model, i.e. a semi-parametric approach, 
as this was the most parsimonious first step.  Based on reviewer recommendations, a fully 
parametric approach was requested.  With knowledge of prior quantitative analyses from the 
literature (Section 4.3.4.1), consideration of the drug development context, and the available 
data, the full modeling analysis was executed. The flow chart (Figure 3) displays the 
progression of the modeling analysis, where subsequent steps were executed based on best 
practices for model building and learnings from previous steps.  All analysis was carried out 
in the R programming language.  Specific details of the R packages utilized are highlighted in 
Section 4.3.4.2. In completion, the model building process followed three main steps: (a) 
Analysis of Cox PH model using the TN01 and TEDDY datasets and testing the PH assumption; 
(b) Development of a parametric accelerated failure time model using the TN01 and TEDDY 
datasets; (c) Evaluation of model performance with k-fold cross-validation and external 
validation with DAISY as a separate independent dataset (Section 4.3.7). 
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Figure 3. Modeling development workflow 

 

4.3.4.1 Prior Knowledge 

A literature review was conducted to identify previous work using quantitative modeling for 
predicting T1D diagnosis (Table 8). The highlighted studies focused on quantifying predictors 
of T1D diagnosis using joint modeling of longitudinal and survival data based on birth cohort 
data. 

 

Analysis Subset  

Univariate Cox PH models 

Selected covariates for 
Multivariate Analysis 

CoxPH - Multivariate 
model 

PH 
violated? 

Yes 

No 

Model Diagnostics and 
Validation  

AFT model - Univariate 
Analysis   

Univariate AFT models 
with selected hazard 

distribution 

Selected covariates for 
Multivariate Analysis 

AFT - Multivariate model 

Model Diagnostics and 
Validation  
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Table 8. Historical quantitative modeling for predicting T1D diagnosis 

Reference Model Purpose Model Description Data 
Utilized 

(Steck et al. 
2015) 

Identify and quantify 
predictors of T1D 
diagnosis 

Survival model with 
continuous time-varying 
covariates (islet AA titer 
values for IA-2, GAD65, and 
IAA), FDR status, HLA subtype  

TEDDY 

(Köhler, 
Beyerlein, 
et al. 2017) 

Quantify the time-
varying association 
between the islet AA 
titer values and T1D 

Bayesian joint modeling of 
longitudinal and survival data 

TEDDY 

(Köhler, 
Umlauf, et 
al. 2017) 

Quantify the time-
varying association 
between the islet AA 
titer values and T1D 

Flexible additive joint 
modeling of longitudinal and 
survival data 

BABYDIAB 
and 
BABYDIET 

 

4.3.4.2 Software 

Model building, visualization, model assumptions, diagnostics and external validation was 
conducted in R (version 4.0.0; Vienna, Austria, R Core Team, 2018) using the packages 
“survival” (Therneau 2020), “flexsurv” (Jackson 2016), “survminer” (Kassambara and 
Kosinski 2018), “dplyr” (Wickham et al. 2020), “survAUC” (Potapov, Adler, and Schmid 2015), 
“rms” (Harrell 2019), survParamSim (Yoshida and Claret 2020) and “riskRegression” (Ozenne 
et al. 2017). 

4.3.5 Cox Proportional Hazard Model 

The semiparametric Cox PH model relates the T1D diagnosis events with the covariates, 

ℎ𝑖𝑖 (𝑡𝑡) =  ℎ0 (𝑡𝑡) exp(∑ 𝛽𝛽𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑗𝑗∈𝐼𝐼 )   (E1) 

where ℎ𝑖𝑖 (𝑡𝑡) is hazard function for individual i determined by a set of j covariates �𝑋𝑋𝑖𝑖𝑖𝑖� and 
corresponding (estimated) coefficients �𝛽𝛽𝑗𝑗� , t is the survival time, and ℎ0 (𝑡𝑡) is the baseline 
hazard. The use of a Cox PH model implies that the underlying baseline hazard function is not 
specified to have a parametric distribution and that the PH assumption holds, i.e. the ratio of 
hazards between different individuals remains constant over time.   

4.3.5.1 Univariate Analysis 

A univariate analysis was performed by estimating a Cox PH model for of the covariates in 
Table 3.  The ‘coxph’ function in the ‘survival’ R package was used for Cox PH analysis 
(Therneau 2020). Covariates with no significant univariate association (P-value ≥ 0.1) with 
T1D diagnosis were not considered for the full model development. The p-value was computed 
using the Wald test, which evaluates whether the covariate coefficient is statistically different 
from zero. A multiplicity adjusted alpha value (Bonferroni correction) was used for univariate 
analysis. 
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4.3.5.2 Analysis of Correlation and Association between Covariates 

The covariates remaining after the univariate analysis were analyzed for multicollinearity and 
associations prior to performing multivariate analysis. Pearson’s correlation was used to test 
the correlation between continuous covariates, with a correlation value above 0.3 chosen as 
significant. The Wilcoxon test was used to test the association between continuous and 
categorical covariates, and the Chi-square test of independence was used to test the 
association between categorical covariates.  In both cases, a p-value < 0.001 (multiplicity 
adjusted) was chosen as the threshold for significance. 

4.3.5.3 Multivariate Analysis 

The multivariate analysis was performed by testing all possible combinations of remaining 
covariates, as the number of covariates for multivariate analysis were reasonable. The 
comparison between possible models was conducted using Akaike’s Information Criteria 
(AIC). A reduction in AIC value greater than or equal to 10 suggests a strong evidence in 
favor of the model with lower AIC (Burnham and Anderson 2016). 

4.3.5.4 Model Diagnostics  

To assess if the PH assumption was satisfied, Schoenfeld residuals were utilized.  The 
expected value of these residuals can be used to quantify potential time-dependency on 
survival times.  The Pearson product-moment correlation between the scaled Schoenfeld 
residuals and log(time) for each covariate was computed using the ‘cox.zph’ function in R. 
Values below a significance threshold indicated a violation of the PH assumption. Additional 
model diagnostics were not performed for the Cox PH model due to a violation of the PH 
assumption observed with the above-mentioned test. 

4.3.6 Parametric Accelerated Failure Time Model  

The AFT model was chosen as the modeling methodology after assessing the Cox PH model 
because it does not require satisfaction of the PH assumption.  It assumes that the effect of 
a covariate is to adjust (accelerate or decelerate) the time course of the event of interest and 
is given by (Jackson 2016), 

𝑆𝑆𝑖𝑖 (𝑡𝑡) =  𝑆𝑆0 �𝑡𝑡 exp(−∑ 𝛽𝛽𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑗𝑗∈𝐼𝐼 ) �        (E2) 

Where S0 is a prespecified form of the parametric distribution for the survival function such 
as Weibull, Lognormal, log-logistic, Gamma, and Generalized gamma. Table 9 provides the 
survival functions for a list of different forms of parametric distribution. The 𝛽𝛽-parameter 
value specifies the effect each covariate has on the survival time, where negative 𝛽𝛽 values 
indicate that the survival time increases with positive-valued covariates, and positive 𝛽𝛽 values 
indicate that the survival time decreases with positive-valued covariates.  For R-package 
survreg, the output “intercept” is the log of the scale (λ) and the output “scale” is the inverse 
of the shape (α) parameter as shown in Table 9. For R-package flexsurvreg, the output “scale” 
is the scale (λ) and the output “shape” is the shape (α) parameter as shown in Table 9.  

4.3.6.1 Selection of Parametric Distribution  

Multiple parametric distributions were tested for their ability to approximate the underlying 
hazard function including exponential, Weibull, gamma, generalized gamma, generalized F, 
log logistic, log normal and Gompertz. Resulting Akaike information criterion (AIC) values and 
graphical methods for survival and hazard function fits were compared to select an 
appropriate parametric form. The ‘flexsurvreg’ function in the ‘flexsurv’ R package was used 
for the selection of parametric distribution analysis. 
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Table 9. Survival function with various forms of parametric distributions 

Parametric Distribution Survival function Parameter 

Weibull 𝑆𝑆𝑖𝑖(𝑡𝑡) = exp {−�
𝑡𝑡

𝜆𝜆𝑒𝑒∑ 𝛽𝛽𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑗𝑗
�
𝛼𝛼

} 

Where λ is the scale 
parameter and α is 

the shape parameter. 

 

Log-normal 
𝑆𝑆(𝑡𝑡𝑖𝑖) = 1 −  Φ (

ln(𝑇𝑇) − 𝜇𝜇 − ∑ 𝛽𝛽𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗

𝜎𝜎
) 

 

𝜎𝜎 is the shape 
parameter and 𝜇𝜇 is 

location 

Log-logistic 𝑆𝑆(𝑡𝑡𝑖𝑖) =
1

1 + (𝜆𝜆𝑡𝑡𝑖𝑖𝛼𝛼𝑖𝑖𝑒𝑒
−𝛼𝛼∑ 𝛽𝛽𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑗𝑗 )

 

Where λ is the scale 
parameter and α is 

the shape parameter. 

 

Gamma 
𝑆𝑆(𝑡𝑡𝑖𝑖) = �

𝜆𝜆𝛼𝛼  (𝑐𝑐(𝑢𝑢))𝛼𝛼−1𝑒𝑒−(𝜆𝜆𝜆𝜆(𝑢𝑢))

Γ(𝛼𝛼)

∞

𝑡𝑡

𝑑𝑑𝑑𝑑 

Where 𝑐𝑐(𝑢𝑢) =  𝑢𝑢 ∗ 𝑒𝑒−∑ 𝛽𝛽𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑗𝑗  

Where λ is the rate 
parameter and α is 

the shape parameter. 

 

 

 

Generalized gamma 
𝑆𝑆(𝑡𝑡𝑖𝑖) = �

𝑝𝑝𝜆𝜆𝑝𝑝𝑝𝑝  (𝑐𝑐(𝑢𝑢))𝑝𝑝𝑝𝑝−1𝑒𝑒−(𝜆𝜆𝜆𝜆(𝑢𝑢))𝑝𝑝

Γ(𝛼𝛼)

∞

𝑡𝑡

𝑑𝑑𝑑𝑑 

Where  𝑐𝑐(𝑢𝑢) =  𝑢𝑢 ∗ 𝑒𝑒−∑ 𝛽𝛽𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑗𝑗  

Where λ is the rate 
parameter and p is 

the shape parameter. 

 

4.3.6.2 Univariate Analysis  

A univariate analysis was performed by estimating an AFT model using the parametric 
distribution selected from Section 4.3.6.1, for each of the covariates in Table 3. The 
‘flexsurvreg’ function in the ‘flexsurv’ R package was used to perform parametric AFT model 
analysis. Individual covariates with no significant association (P-value ≥ 0.05) with T1D 
diagnosis were not considered for the full model development. The p-value was computed 
using the Wald test, as described in Section 4.3.5.1. A multiplicity adjusted alpha value 
(Bonferroni correction) was used for univariate analysis. The remaining covariates were 
analyzed for multicollinearity and associations prior to performing multivariate analysis. 
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4.3.6.3 Analysis of Correlation and Association between Covariates  

The analysis defined in Section 4.3.5.3 was repeated for the covariates remaining after the 
AFT univariate analysis. 

4.3.6.4 Multivariate Analysis 

The multivariate analysis was performed by testing all possible combinations of covariates, 
as the number of covariates for multivariate analysis were reasonable. The comparison 
between possible models was made using AIC criteria. A reduction in AIC value greater than 
or equal to 10 suggests strong evidence in favor of the model with lower AIC (Burnham and 
Anderson 2016). Additionally, per EMA SAWP feedback, three alternative models were added 
to the list of multivariate models.  These models included baseline age and sex as covariates 
in different combinations, in addition to the previous covariates, included from the 
multivariate analysis. 

4.3.6.5 Model Diagnostics  

Quantile-Quantile (Q-Q) plots were used to assess the validity of the AFT model assumption 
for two groups of survival data. In this case, such groups correspond to the presence or 
absence of an AA combination.  Under the AFT model assumption, the presence of one islet 
AA combination has a multiplicative effect on survival time. Conceptually, a Q-Q plot examines 
various percentiles for which the survival times are computed for the two groups.  A plot of 
the survival times for the chosen percentiles should give a straight line if the AFT model is 
appropriate, where the straight line is an estimate of the acceleration factor.  Such plots were 
generated for each AA combination in the AFT model. To analyze continuous covariates, binary 
groups were formed using thresholds to allow for the generation of Q-Q plots. 

4.3.7 Model Performance and Validation 

4.3.7.1 Model Performance 

To assess the model’s predictive performance on the analysis set, time-dependent receiver 
operating characteristic (ROC) curves were generated (Heagerty and Zheng 2005). 
Conceptually, the methodology of this metric is that model predictions on all at-risk individuals 
up to a time t are derived, and true/false positive rates based on model predictions versus 
the observed data are computed.  This is repeated across multiple timepoints to generate 
ROC curves. The area under the ROC curves (AUC) are computed, which are interpreted as 
the concordance between the model prediction and data. This methodology is an appropriate 
model performance metric as an individual’s risk for developing T1D changes over time. 
Further, it provides metrics as to the model’s predictive power for time frames over which a 
trial of reasonable duration would be conducted. To further explore performance, predictions 
on each fold stratified by individual covariates were performed. Goodness-of-fit plots (VPC-
style) were created for visual assessments of models fits (Appendix G). The ‘survParamSim’ 
R package was used to generate the VPC-style plots. The procedure mimics parametric 
bootstrap simulations and follows the steps below: 

1. Estimate the model using the training set. 

2. Using the parameter estimates (𝜷𝜷�) and variance-covariance matrix (𝜮𝜮�𝛽𝛽) from the 
model in step 1 sample parameter values (β) from multivariate Normal (𝜷𝜷� ,𝜮𝜮�𝛽𝛽) 

3. Generate event 𝑇𝑇𝑖𝑖∗ times using the covariates in the validation set and parameters 
generated in step 2 from Weibull distribution/Parametric distribution. (For Weibull, the 
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scale= 𝜆𝜆𝑒𝑒∑ 𝛽𝛽𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑗𝑗  and shape= 1/scale from survreg estimates). Generate censoring times 
(𝐶𝐶𝑖𝑖)as uniform random values. 

4. Define simulated event indicator/status as 𝛿𝛿𝑖𝑖 = I (𝑇𝑇𝑖𝑖∗ ≤ 𝐶𝐶𝑖𝑖) and observed event times 𝑇𝑇𝑖𝑖 =
min (𝑇𝑇𝑖𝑖∗,𝐶𝐶𝑖𝑖) 

5. Derive Kaplan Meier estimates for the simulated sample. Interpolate survival times at 
smaller ranges i.e. year/event times of validation set. “approx.” function in r is used 
to interpolate  

6. Repeat steps 2-5 1000 times. From the 1000 survival estimates in 5, plot 95% 
predicted intervals at prespecified time points. Overlay Kaplan Meier plot of 
validation/observed data set. 

4.3.7.2 K-fold Cross-Validation  

Model validation was performed using the k-fold cross-validation technique (Breiman and 
Spector 1992). Data was split into k=5 subsets with roughly equal numbers of subjects.  Four 
of the five subsets were used as a training set, and the remaining set was used as an individual 
test set. This process was repeated by assigning one of the five subsets as the new test set, 
while the remaining were used as the training set for all combinations. Goodness-of-fit plots 
were created by overlaying the model estimated survival on Kaplan-Meier curves for all five 
folds. The concordance index was computed for each of the five folds estimated by time 
increments of one year up to six years.  

4.3.7.3 Cross-Validation on Pediatric Population  

An internal validation was performed by analyzing predictive performance on pediatric 
subpopulations in the data.  A randomly selected portion (50%) of individuals aged less than 
an age threshold was extracted and used as a test data set. The remaining data constituted 
the training data used to fit the model.  Goodness-of-fit plots were created by overlaying 
model estimated survival on Kaplan-Meier curves.  The concordance index was computed for 
time increments of one year up to six years. 

4.3.7.4 External Validation  

External validation was performed using the DAISY dataset described in Section 4.3.1. The 
definition of the derived baseline defined in Section 4.3.2.1 was applied to the data to arrive 
at a validation set.  The AFT model was used to predict survival within this subset. Goodness-
of-fit (VPC style) plots were created by overlaying model estimated survival on Kaplan-Meier 
curves.  The concordance index was computed for time increments of one year up to six years. 

4.4 Results  

The execution of the modeling methodologies outlined in Section 4.3 are reported here.  The 
Cox PH model focused on checking the validity of the PH assumption.  As this assumption was 
not met, a parametric AFT model was chosen. Model diagnostic, performance, and validation 
exercises were performed to assess the model’s ability to quantify the time-varying effect of 
islet AAs and glycemic markers on risk to T1D diagnosis. For ease of viewing, the notation for 
covariates is shown using the underlying subscript, e.g. XGAD65_IAA is equivalent to GAD65_IAA. 
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4.4.1 Cox Proportional Hazard Model  

4.4.1.1 Univariate Analysis 

A univariate analysis was performed using the covariates listed in Table 3. Estimates of each 
individual regression beta coefficient, effect size (hazard ratio), and statistical significance 
was determined with respect to the overall survival (Table 10). The covariates SEX, bAGE_s, 
GAD65_IAA, GAD65_ZnT8, IA-2_ZnT8, IA-2_IAA_ZnT8, GAD65_IA-2_IAA_ZnT8, 
Log_GLU0_s, Log_GLU120_s, and HbA1c_s had statistically significant beta coefficients. The 
covariates for Trial ID, BMI, high-risk HLA subtype, FDR and several AA combinations 
(GAD65_IA-2, IA-2_IAA, IAA_ZnT8, GAD65_IAA_ZnT8, GAD65_IA-2_ZnT8, GAD65_IAA_IA-
2) did not show a significant effect on overall survival and were dropped from subsequent 
analysis based on a p-value < 0.1 (multiplicity adjusted). The negative beta coefficient for 
some islet AA combinations, such as GAD65_IAA indicates lower hazard relative to the 
baseline hazard function, which accounts for risk of all other combinations of AA. All the 
covariates that showed statistical significance were considered for multivariate analysis. 

Table 10. Univariate analysis for each covariate using Cox PH Model 

 Covariate beta HR (95% CI) Wald 
statistic 

p-value Significant 

TEDDY_Trial -0.001 1 (0.82-1.2) 0 0.99 No 
SEX -0.26 0.77 (0.65-0.91) 9 0.0026 Yes 
bAGE_s -0.26 0.77 (0.69-0.85) 24 8.40E-07 Yes 
BMI -0.027 0.97 (0.95-1) 4 0.044 No 
HR_HLA 0.093 1.1 (0.92-1.3) 1.1 0.3 No 
FDR -0.011 0.99 (0.8-1.2) 0.01 0.92 No 
GAD65_IAA -0.71 0.49(0.37-0.65) 24 1.20E-06 Yes 
GAD65_ZnT8 -0.8 0.45 (0.32-0.62) 23 1.40E-06 Yes 
GAD65_IA-2 0.07 1.1 (0.8-1.4) 0.22 0.64 No 
IA-2_IAA 0.4 1.5 (0.8-2.8) 1.6 0.21 No 
IA-2_ZnT8 0.75 2.1 (1.5-2.9) 19 1.30E-05 Yes 
IAA_ZnT8 -0.073 0.93 (0.5-1.7) 0.05 0.82 No 
GAD65_IA-2_IAA 0.2 1.2 (0.84-1.8) 1.1 0.29 No 
GAD65_IAA_ZnT8 -0.27 0.76 (0.55-1.1) 2.5 0.11 No 
GAD65_IA-2_ZnT8 0.14 1.2 (0.92-1.4) 1.6 0.21 No 
IA-2_IAA_ZnT8 0.72 2.1 (1.5-2.9) 18 2.00E-05 Yes 
GAD65_IA-2_IAA_ZnT8 0.44 1.6 (1.3-1.9) 18 2.00E-05 Yes 
Log_GLU120_s 0.78 2.2 (2-2.4) 240 9.40E-55 Yes 
Log_GLU0_s 0.19 1.2 (1.1-1.3) 15 8.30E-05 Yes 
HbA1c_s 0.56 1.7 (1.6-1.9) 130 1.10E-30 Yes 

4.4.1.2 Analysis of Correlation and Association between Covariates  

The correlation between the continuous covariates (Figure 4) did not reveal any covariate 
pairs with high correlation, defined as correlations above 0.3. The Wilcoxon test (Table 11) 
and the chi-square test of independence (Table 12) showed that the baseline Age (bAGE_s) 
and SEX were highly associated with AA combinations. Hence, bAGE_s and SEX were dropped 
from subsequent analysis. Association between islet AA combinations was not considered 
relevant as their presence is mutually exclusive i.e. only one islet AA combination is possible 
for a given subject. Hence, based on the correlation and association analysis between 
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covariates GAD65_IAA, GAD65_ZnT8, IA-2_ZnT8, IA-2_IAA_ZnT8, GAD65_IA-2_IAA_ZnT8, 
Log_GLU0_s, Log_GLU120_s, and HbA1c_s were chosen for multivariate analysis. 

Figure 4. Pearson’s correlation between continuous covariates 

  

 

 

Table 11. Wilcoxon test between continuous and categorical covariates 

 Covariate SEX GAD65_ 
IAA 

GAD65_ 
ZnT8 

IA-2_ 
ZnT8 

IA-2_ 
IAA_ZnT8 

GAD65_IA-2 
_IAA_ZnT8 

bAGE_s 1.28E-02 3.31E-07 1.05E-16 3.51E-01 2.81E-10 1.14E-07 
Log_GLU120_s 9.26E-02 7.38E-03 2.17E-03 3.76E-03 1.31E-03 5.45E-02 
Log_GLU0_s 2.60E-04 6.85E-01 2.67E-01 2.29E-01 5.58E-01 4.10E-01 
HbA1c_s 1.56E-01 4.37E-01 1.05E-01 2.30E-01 1.36E-01 7.22E-02 
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Table 12. Chi-square test of independence between categorical covariates 

  GAD65_ IAA GAD65_ ZnT8 IA-2_ ZnT8 IA-2_ IAA_ZnT8 GAD65_IA-2_ 
IAA_ZnT8 

SEX 7.55E-01 4.07E-02 6.57E-05 4.13E-03 7.96E-01 
 

4.4.1.3 Multivariate Analysis  

A total of eight possible multivariate models were obtained based on covariates selected from 
univariate analysis (Section 4.4.1.1) and analysis of correlation and association Section 
4.4.1.2. Islet AA combinations remaining after the univariate analysis were included to 
generate the base model as this multi-level covariate was of primary interest. AIC values 
were computed for these eight model fits (Table 13). Models 6 and 8 produced the least AIC 
values. Additionally, AIC values for these two models were significantly lower (> 10) 
compared to all other models. Among these two models, model 6 was selected as the selected 
Cox PH model as it produced a lower AIC with a lower number of covariates. In summary, a 
Cox PH model and covariates GAD65_IAA, GAD65_ZnT8, IA-2_ZnT8, IA-2_IAA_ZnT8, 
GAD65_IA-2_IAA_ZnT8, Log_GLU120_s and HbA1c_s was selected as the selected 
multivariate model. Table 14 provides the parameter estimates for the selected model. 
Appendix H Table 1-7 provides parameter estimates for other models listed in Table 13. 

Table 13. Value of AIC for models fitted with Cox PH 

Model Covariates AIC 
1 GAD65_IAA + GAD65_ZnT8 + IA-2_ZnT8 + IA-2_IAA_ZnT8 + 

GAD65_IA-2_IAA_ZnT8 (Base model) 
7038.28 

2 Base model + Log_GLU0_s 7024.95 
3 Base model + HbA1c_s 6918.96 
4 Base model + Log_GLU120_s 6808.17 
5 Base model + Log_GLU120_s + Log_GLU0_s 6801.93 
6 Base model + Log_GLU120_s + HbA1c_s 6730.80 
7 Base model + Log_GLU0_s + HbA1c_s 6918.23 
8 Base model + Log_GLU0_s + Log_GLU120_s + HbA1c_s 6732.35 

 

Table 14. Selected Cox PH model parameter estimates (model 6) 

Covariate beta Std Error 
(beta) 

HR Wald 
Statistic 

p-value 

GAD65_IAA -0.58258 0.15354 0.55845 -3.794 0.000148 
GAD65_ZnT8 -0.7244 0.17331 0.48461 -4.18 2.92E-05 
IA-2_ZnT8 0.41654 0.17858 1.5167 2.333 0.019673 
IA-2_IAA_ZnT8 0.4713 0.17536 1.60207 2.688 0.007196 
GAD65_IA-2_IAA_ZnT8 0.19173 0.11255 1.21134 1.704 0.088463 
Log_GLU120_s 0.69255 0.05145 1.99881 13.46 < 2e-16 
HbA1c_s 0.41789 0.04699 1.51875 8.893 < 2e-16 
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4.4.1.4 Model Diagnostics  

The model diagnostic to test the PH assumption was performed using the ‘cox.zph function’ 
on the selected Cox PH model described in Section 4.4.1.3. The results showed that HbA1c_s 
and Log_GLU120_s violated the proportional hazards assumption (Table 15). The global p-
value was also less than 0.05. To further verify this result, the scaled Schoenfeld residual plot 
showed a systematic departure from the horizontal line for HbA1c_s and GLU120_s indicating 
a clear dependency on time, i.e. a violation of proportional hazards assumption (Figure 5). 
The Schoenfeld residuals plots for islet AA combination in the selected model are available in 
Appendix H Figure 27-31. For subsequent analysis, an AFT model was analyzed as it does not 
require the PH assumption to hold. 

Table 15. Testing proportional hazards assumption using Schoenfeld residuals to 
test for independence between residuals and survival time 

Covariate p-value 
GAD65_IAA 0.74 
GAD65_ZnT8 0.31 
IA-2_ZnT8 0.81 
IA-2_IAA_ZnT8 0.47 
GAD65_IA-2_IAA_ZnT8 0.98 
Log_GLU120_s <2.0 E-16 
HbA1c_s 1.6 E-10 
GLOBAL <2.06E-16 

 

Figure 5. Graphical diagnostics with scale Schoenfeld residuals (Beta(t)) against 
survival time 

 

4.4.2 Parametric Accelerated Failure Time Model  

4.4.2.1 Selection of Parametric Distribution  

Several parametric distributions were tested as the basis for the probability density in the AFT 
model. The Weibull distribution was found to be the most appropriate distribution to 
parameterize the form of hazard function based on AIC and graphical inspection (Table 16, 
Figure 6). Large deviations of the estimated hazard function represented by the data (black 
line in Figure 6) are seen in comparison to the Weibull profile (red line in Figure 6) for times 
beyond four years.  This is due to the sparseness of data for longer diagnosis time but does 
not have a large impact on survival prediction (see survival estimate in Figure 6). The AIC 
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values were computed using the base AFT model, i.e. without covariates (null model). Weibull, 
gamma, generalized gamma, generalized F, log logistic distributions were seen to have similar 
AIC values indicating that any choice from among them is immaterial for improved model 
fitting. The Weibull distribution was selected among these distributions based on graphical 
inspection for survival and hazard functions (Figure 6). Additionally, the Weibull distribution 
is well-characterized and has several supporting software packages. The hazard function and 
cumulative hazard plots for other distributions are available in Appendix H Figure 32-38. 

Table 16. AIC value for hazard distribution 

Hazard Distribution AIC 
Exponential 3400.20 
Weibull 3376.17 
Gamma 3374.81 
generalized gamma 3375.76 
generalized F 3377.76 
log logistic 3375.35 
Gompertz 3387.68 
log normal  3392.20 

Figure 6. Survival and hazard plots for Weibull Distribution. (Black lines represent 
the estimated hazard and survival functions from the data, and red solid and dotted 
lines indicate the mean and 95% confidence intervals of the Weibull model fit.) 

 

4.4.2.2 Univariate Analysis 

A univariate AFT model analysis using the Weibull distribution was performed using the 
covariates listed in Table 3.  The beta coefficients, 95% confidence interval for the coefficient, 
and statistical significance for each of the covariate with respect to the overall survival is 
shown in (Table 17). The covariates bAGE_s, GAD65_IAA, GAD65_ZnT8, IA-2_ZnT8, IA-
2_IAA_ZnT8, GAD65_IA-2_IAA_ZnT8, Log_GLU0_s, Log_GLU120_s, and HbA1c_s had 
statistically significant beta coefficients. The covariates SEX, Trial ID, BMI, high risk HLA 
subtype, FDR and Several AA combinations (GAD65_IA-2, IA-2_IAA, IAA_ZnT8, 
GAD65_IAA_ZnT8, GAD65_IA-2_ZnT8, GAD65_IAA_IA-2) did not show significant effect on 
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overall survival and were dropped from subsequent analysis. All the covariates that showed 
statistical significance (p < 0.05, multiplicity adjusted) were considered for subsequent 
analysis. 

Table 17. Univariate analysis for each covariate using AFT model with Weibull 
distribution 

 Covariate beta 95% 
lower CI 

95% 
upper CI 

p-value Significant 

TEDDY_Trial 0.0109 -0.151 0.173 0.895 No 
SEX 0.218 0.0755 0.361 0.00273 No 
bAGE_s 0.217 0.129 0.306 1.56E-06 Yes 
HR_HLA -0.0684 -0.213 0.0765 0.355 No 
FDR -0.00096 -0.175 0.173 0.991 No 
BMI 0.0212 0.000217 0.0421 0.0477 No 
GAD65_IAA 0.587 0.348 0.826 1.50E-06 Yes 
GAD65_ZnT8 0.663 0.392 0.935 1.66E-06 Yes 
GAD65_IA-2 -0.0571 -0.298 0.184 0.643 No 
IA-2_IAA -0.329 -0.846 0.189 0.214 No 
IA-2_ZnT8 -0.614 -0.892 -0.337 1.40E-05 Yes 
IAA_ZnT8 0.0653 -0.452 0.583 0.805 No 
GAD65_IA-2_IAA -0.163 -0.473 0.147 0.303 No 
GAD65_IAA_ZnT8 0.221 -0.056 0.498 0.118 No 
GAD65_IA-2_ZnT8 -0.117 -0.299 0.0656 0.209 No 
IA-2_IAA_ZnT8 -0.592 -0.868 -0.316 2.57E-05 Yes 
GAD65_IA-2_IAA_ZnT8 -0.368 -0.536 -0.199 1.91E-05 Yes 
Log_GLU120_s -0.607 -0.687 -0.526 2.07E-49 Yes 
Log_GLU0_s -0.156 -0.232 -0.0789 7.01E-05 Yes 
HbA1c_s -0.449 -0.529 -0.369 5.08E-28 Yes 

 

4.4.2.3 Analysis of Correlation and Association  

The correlation and association analysis are irrespective of the choice of the survival model; 
hence, the analysis described in Section 4.4.1.2 was used to assess covariate selection for 
AFT multivariate analysis. As a result, based on AFT univariate analysis (Section 4.4.2.2) and 
Analysis of Correlation and Association (Section 4.4.1.2) covariates GAD65_IAA, 
GAD65_ZnT8, IA-2_ZnT8, IA-2_IAA_ZnT8, GAD65_IA-2_IAA_ZnT8, Log_GLU0_s, 
Log_GLU120_s, and HbA1c_s were chosen for AFT multivariate analysis. 

4.4.2.4 Multivariate Analysis 

A total of eight possible multivariate models were obtained based on covariates selected from 
univariate analysis (Section 4.4.2.2) and analysis of correlation and association (Section 
4.4.2.3). All significant AA combinations from univariate analysis were included to generate 
the base model as these covariates were of primary interest. Models 6 and 8 produced the 
least AIC values (Table 18).  Additionally, AIC values for these two models were significantly 
lower (> 10) compared to all other models. Among these two models, model 6 produced a 
lower AIC with a lower number of covariates. In summary, an AFT model with Weibull 
distribution and covariates GAD65_IAA, GAD65_ZnT8, IA-2_ZnT8, IA-2_IAA_ZnT8, 
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GAD65_IA-2_IAA_ZnT8, Log_GLU120_s and HbA1c_s was chosen (model 6) among the 8 
models. Table 19 provides the parameter values for model 6 with shape and scale parameters 
for the Weibull distribution, estimated beta values, and Wald test p-values for each covariate. 
Appendix H Table 8-14 provides parameter estimates for other models listed in  Table 18. As 
per EMA SAWP feedback,  alternative models were developed by adding bAGE_s and SEX in 
different combinations to model 6 (Table 20). For comparison, the originally proposed model 
6 will be referred to as the original model (orig_mod).  The original model AIC value was 
compared with the alternative models (Table 20). The AIC value of alternative model 3 
(alt_mod3) was significantly lower (with a reduction > 10) compared to all other alternative 
models and the original model. Hence, alternative model 3 (alt_mod3) was chosen as the 
selected model. Model performance and validation were executed for the selected model 
(alt_mod3) as discussed in the subsequent sections. Table 21 shows the parameter estimates 
for the selected model (alt_mod3). 

Table 18. Values of AIC for AFT models fitted with a Weibull distribution 

Model Covariates AIC 
1 GAD65_IAA + GAD65_ZnT8 + IA-2_ZnT8 + IA-2_IAA_ZnT8 + 

GAD65_IA-2_IAA_ZnT8 (Base model) 
3292.476 

2 Base model + Log_GLU0_s 3278.769 
3 Base model + HbA1c_s 3173.157 
4 Base model + Log_GLU120_s 3059.067 
5 Base model + Log_GLU120_s + Log_GLU0_s 3052.591 
6 Base model + Log_GLU120_s + HbA1c_s 2981.886 
7 Base model + Log_GLU0_s + HbA1c_s 3172.244 
8 Base model + Log_GLU0_s + Log_GLU120_s + HbA1c_s 2983.369 

 

Table 19.  Model 6 (orig_mod) parameter estimates 

Covariates Beta 95% lower CI 95% upper CI p-value 
Shape 1.350 1.260 1.440 NA 
Scale 7.710 6.901 8.634 NA 
GAD65_IAA 0.434 0.210 0.659 1.50E-04 
GAD65_ZnT8 0.539 0.286 0.792 2.95E-05 
IA-2_ZnT8 -0.303 -0.562 -0.043 2.21E-02 
IA-2_IAA_ZnT8 -0.342 -0.597 -0.086 8.69E-03 
GAD65_IA-2_IAA_ZnT8 -0.143 -0.306 0.021 8.78E-02 
Log_GLU120_s -0.518 -0.594 -0.441 5.64E-40 
HbA1c_s -0.309 -0.379 -0.239 3.42E-18 
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Table 20. Value of AIC for original model (model 6) and other alternative models 

Model Covariates AIC 

Original Model 
(orig_mod) 

GAD65_IAA + GAD65_ZnT8 + IA-2_ZnT8 + IA-
2_IAA_ZnT8 + GAD65_IA-2_IAA_ZnT8+ Log_GLU120_s 

+ HbA1c_s 

2982 

Alternative Model 1 
(alt_mod1) 

GAD65_IAA + GAD65_ZnT8 + IA-2_ZnT8 + IA-
2_IAA_ZnT8 + GAD65_IA-2_IAA_ZnT8+ Log_GLU120_s 

+ HbA1c_s + SEX 
2972 

Alternative Model 2 
(alt_mod2) 

GAD65_IAA + GAD65_ZnT8 + IA-2_ZnT8 + IA-
2_IAA_ZnT8 + GAD65_IA-2_IAA_ZnT8+ Log_GLU120_s 

+ HbA1c_s + bAGE_s  
2937 

Alternative Model 3 
(alt_mod3) 

GAD65_IAA + GAD65_ZnT8 + IA-2_ZnT8 + IA-
2_IAA_ZnT8 + GAD65_IA-2_IAA_ZnT8+ Log_GLU120_s 

+ HbA1c_s + bAGE_s + SEX 
2921 

 

Table 21. Selected model (alt_mod3) parameter estimates 

Covariates Beta 95% lower CI 95% upper CI p-value 
Shape 1.370 1.280 1.470 4.31E-192 
Scale 6.780 5.990 7.670 4.36E-56 
log_GLU120_s -0.546 -0.623 -0.469 1.54E-43 
HbA1c_s -0.322 -0.392 -0.252 1.33E-19 
SEX 0.275 0.147 0.403 2.65E-05 
bAGE_s 0.267 0.183 0.350 3.57E-10 
GAD65_IAA 0.506 0.284 0.728 7.95E-06 
GAD65_ZnT8 0.474 0.225 0.723 1.88E-04 
IA-2_ZnT8 -0.346 -0.603 -0.087 8.42E-03 
IA-2_IAA_ZnT8 -0.257 -0.512 -0.002 4.82E-02 
GAD65_IA-2_IAA_ZnT8 -0.064 -0.226 0.099 4.40E-01 

 

4.4.2.5 Model Diagnostics  

The diagnostic analysis indicated that the AFT models adequately described the effect of AA 
combination status (presence or absence), HbA1c_binary, AGE_binary, SEX, and 
GLU120_binary. The Q-Q plots for each covariate produced points that approximate a straight 
line through the origin suggesting the validity of the AFT model (Figure 7). 
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Figure 7. QQ plots for categorical covariates in the model 
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Figure 7 (continued).   

 

 

 

4.4.3 Model Performance and Validation 

4.4.3.1 Model Performance  

The time-dependent ROC curves and AUC values showed good prediction performance 
especially for up to 2.5 years with AUC values greater than 0.8 (Figure 8). The AUC values 
for subsequent years for up to 5.5 years were greater than 0.75. These results provide 
evidence for good predictive power for time frames over which clinical trials of reasonable 
duration would be conducted.   
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Figure 8. Evaluation of model performance using time dependent receiver operation 
characteristic (ROC) analysis  

 

4.4.3.2 K-fold Cross Validation  

The c-index for the selected model (alt_mod3) for all five folds over six years was, in most 
cases, close to or higher than 0.8, suggesting good predictive performance (Table 22). VPC-
style plots overlaying Kaplan-Meier curves over the selected model predictions showed good 
graphical fit for folds 1, 2, 3 and 4, while fold 5 only performed well within the first year. The 
black curve represents the Kaplan–Meier estimate, and the red curve represents model 
prediction (Figure 9). The black curve represents the Kaplan–Meier estimate, and the red 
curve represents model prediction. These results provide evidence for good predictive power 
for time frames over which clinical trials of reasonable duration would be conducted. To assess 
performance across the covariates, plots were created to show model predictions stratified by 
each of the islet AA combinations and continuous covariates using binary groups (Appendix H 
Figure 39-73).  
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Table 22. C-index values over 6 years for each fold during k-fold cross validation 
analysis 

C-index 
(alt_mod3) 

Up to 
year 1 

Up to 
year 2 

Up to 
year 3 

Up to 
year 4 

Up to 
year 5 

Up to 
year 6 

fold 1 0.81 0.76 0.75 0.75 0.75 0.74 
fold 2 0.87 0.85 0.81 0.81 0.80 0.79 
fold 3 0.85 0.82 0.80 0.78 0.77 0.77 
fold 4 0.84 0.82 0.80 0.79 0.78 0.78 
fold 5 0.87 0.83 0.81 0.81 0.80 0.80 

 

Figure 9. VPC-style plots for k-fold cross validation (red shaded region shows the 
95% prediction interval and the black shaded region shows the 95% CI for the 
observed data) 
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4.4.3.3 Cross-Validation on a Pediatric Population (age < 12)  

A pediatric population (age < 12) was derived in the analysis dataset comprised of 1330 
subjects, with 345 from TEDDY and 985 from TN01. Half of this population, i.e. 665, were 
randomly selected as a test set for this cross-validation analysis. A c-index of 0.8 or higher 
was obtained until 3 years and a c-index of 0.75 or higher was obtained up to 6 years for the 
selected model (alt_mod3) indicating good model performance (Table 23). The visual 
predictive check (VPC) performed on the survival plot for cross-validation on the pediatric 
population (age < 12) showed reasonable graphical fit (Figure 10). The black curve represents 
the Kaplan–Meier estimate for the observed data, and the red curve represents the model 
prediction. The median of the prediction interval was within the 95% CI band of the estimated 
Kaplan-Meier curve for the observed data.  

Table 23. C-index values over six years with cross-validation on a pediatric 
population (age < 12)  

 Up to 
year 1 

Up to 
year 2 

Up to 
year 3 

Up to 
year 4 

Up to 
year 5 

Up to 
year 6 

C-index 0.88 0.84 0.81 0.79 0.78 0.78 
 

Figure 10. VPC-style plot for internal cross validation (CV) using pediatric 
population (red shaded region shows the 95% prediction interval and the black 
shaded region shows the 95% CI for the observed data) 

 

4.4.3.4 External Validation  

For external validation with DAISY dataset, the selected model (alt_mod3) achieved a c-index 
0.91 and 0.82 in years one and two, respectively, even with a limited number of subjects, 34 
in the external dataset (Table 24). However, the c-index values beyond three years were 
relatively lower than up to 2 years, likely attributable to the sparsity of T1D diagnoses during 
the later years in the DAISY analysis set (Table 24). The VPC performed on the survival plot 
showed good graphical fit given the limited number of events (Figure 11). These results 
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provide evidence for good predictive power for time frames over which a trial of reasonable 
duration would be conducted.  

Table 24. C-index values over six years with DAISY external validation dataset  

C-index Up to 
year 1 

Up to 
year 2 

Up to 
year 3 

Up to 
year 4 

Up to 
year 5 

Up to 
year 6 

alt_mod3 0.91 0.82 0.67 0.68 0.67 0.66 
 

Figure 11. VPC-style plot for external validation using the DAISY analysis dataset 
(red shaded region shows the 95% prediction interval and the black shaded region 
shows the 95% CI for the observed data) 

 

  

4.5 Intended Application of Proposed Tool  

The islet AAs are intended to be leveraged as enrichment biomarkers as a means of patient 
selection in clinical trials investigating therapies that are intended to prevent or delay the 
clinical diagnosis of T1D. These biomarkers, along with additional patient features, including 
baseline HbA1c and the 120-minute timepoint from an OGTT, can be used as predictors to 
identify subpopulations at highest risk of a diagnosis of T1D during T1D prevention clinical 
trials. 

4.5.1 Methodology of Tool  

The proposed model is intended to be the foundation of a fully functioning end-user tool that 
will allow sponsors to optimize enrichment criteria for clinical trials in T1D prevention studies. 
The following describes the methodology of the proposed tool. 

A. The user will define a set of subject characteristics at study entry accounting for 
relevant covariates. In particular, the user will specify the relative proportions of 
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combinations of islet AAs, a threshold for 120-minute timepoint OGTT, and a threshold 
for HbA1c percentage.  

B. A virtual patient population of N individuals will be generated with the characteristics 
defined in (A.) 

C. The tool will use the underlying model to compute the survival curve for each of the N 
individuals.  The curves will be averaged to determine the mean survival for the 
population defined by the chosen covariates.  

D. Resampling techniques will be used to generate confidence intervals around the mean 
survival curve. 

E. Ranges of predicted times to diagnosis for the chosen population will be computed 
using the mean survival curve and corresponding confidence intervals from D. 

F. Based on results obtained in (E.), the user may decide to change entry characteristics 
(A.) and re-run the survival analysis (D.) until the desired patient population 
characteristics are achieved. 

4.5.2 Key Deliverables 

This briefing dossier is accompanied by R scripts and data files. The R scripts consists of 4 R 
markdown files, “1 Analysis subset derivation.Rmd”, “2 Data analysis.Rmd”, “3 Modeling 
analysis.Rmd” and “4 Model validation.Rmd”. The data files consist of 3 Comma-Separated 
Values (CSV) files, “derived_bl_data_clean.csv” “longitudinal_derived_baseline.csv” and 
“daisydatamart_updated.csv”.  R scripts and data files are provided in a single zip file with an 
appropriate folder structure. The Appendix I provides instructions for running the R markdown 
files and viewing the results. 

4.6 Conclusions: Methodology and Results  

The goal of this work is to leverage existing data sources that captured islet AA measurements 
and glycemic markers in a population likely to participate in T1D prevention trials to generate 
evidence supporting a qualification opinion for the use of islet AAs as enrichment biomarkers 
for T1D prevention trials . The underlying evidence is presented as a time-to-event model for 
predicting the probability of T1D diagnosis.  Data sources included multiple observational 
studies and required harmonization efforts to ensure interoperability. The resulting analysis 
set was used to test various models beginning, using a Cox PH model as an initial approach.  
The analysis for the Cox PH model started by verifying the validity of the PH assumption. As 
this assumption was not met and given the SAWP’s recommendation to evaluate a parametric 
modeling approach, a parametric AFT model was chosen. Model diagnostic and performance 
exercises were performed to assess the model and quantify the effect of islet AAs, baseline 
age, sex, and glycemic markers on time to T1D diagnosis. The AFT model constituted the 
candidate model presented in this briefing dossier.  

The use of baseline islet AA positivity in the model was represented as a single covariate with 
eleven distinct levels representing all possible combinations of two or more of GAD65, IAA, 
IA-2, and ZnT8.  This approach is more granular than considering the total numbers of islet 
AAs and provides the ability to quantify risk by islet AA type. By only assessing individuals at 
baseline, it is possible that subjects positive for two or three islet AA may convert to the three 
or four islet AAs before diagnosis. However, this baseline selection method reflects how 
sponsors will recruit subjects for T1D prevention studies as the islet AA time history of subjects 
will not be available to sponsors.  The use of baseline information is therefore preferred in 
this context. 

Results from the AFT model indicate that GAD65_IAA and GAD65_ZnT8 combinations have 
the least relative risk compared to all other combinations, while the IA-2_ZnT8 has the highest 
relative risk.  The presence of all four islet AAs has a marginal increase of risk relative to the 
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baseline hazard. The use of 120-minute OGTT, baseline age, sex and HbA1c values provide a 
significant ability to further stratify the risk of T1D diagnosis within these islet AA positive 
populations (alt_mod3). To provide credibility to these results, both internal and external 
validation procedures were carried out for selected model (alt_mod3). Internally, a time 
dependent receiver operation characteristic (ROC) analysis was performed, which showed 
high overall concordance across AUC values (> 0.75), especially within the first two-years 
following the derived baseline, which represents a time frame concordant with feasible trial 
design for T1D prevention. The internal validation was carried out to measure concordance in 
a time-dependent manner using k-fold cross validation, as model accuracy over the 
reasonable duration of prevention trials is the more important consideration. In this case, 
concordance in the first two years was high (c-index > 0.75). Additional internal validation 
was carried out for a pediatric population (<12 years); as such, this population is of keen 
interest to sponsors. Results showed a high degree of concordance in this population as well 
(c-index≈0.8). External validation was carried out on the DAISY study, additionally showing 
a high concordance in the first two years (c-index > 0.8), suggesting that the presented 
underlying evidence is adequate for a qualification opinion for the use of islet AAs for trial 
enrichment, as per the proposed COU.  

A key consideration of the data is the selection of individuals with non-missing information 
for glycemic measurements for inclusion in the derived baseline population used in the AFT 
model. The applicant considers this population is representative of those likely to enter a T1D 
prevention study. The quantification of OGTT values on timing to T1D diagnosis are especially 
important for further stratification. Another consideration of the data is that the time history 
of islet AA positivity is unknown in TN01, representing a source of variability. Although this 
variability is contained by each islet AA combination, it represents the practical reality of drug 
development and trial design for prevention studies. The purpose of this effort is to qualify 
islet AAs as enrichment biomarkers for T1D prevention studies. As such, the applicant 
considers that a sponsor of a prevention T1D study will not know the islet AA time history of 
participating subjects, and the TN01 data discussed in this dossier are representative of a 
population that is likely to enter a T1D prevention study. The proposed use of islet AAs as 
enrichment tools for T1D prevention trials provides a basis to identify subpopulations likely to 
reach a T1D diagnosis during trials of reasonable duration. As such, a quantitative tool to 
quantify the variability of expected times to diagnosis is out of scope for this qualification 
opinion. Lastly, the size of the external validation was small due to the definition of the 
baseline used in the analysis. While the model performed well, additional credibility can be 
established with larger numbers of subjects from other independent datasets.   

In conclusion, the applicant demonstrated that analysis of integrated data from independent 
observational data sources represents adequate supporting evidence for a qualification 
opinion for the use of islet AAs as enrichment biomarkers for T1D prevention trials. When 
used in this setting, islet AAs can identify populations likely to reach a T1D diagnosis during 
T1D prevention studies of reasonable duration. The model presented provides a basis to 
quantitatively link independent sources of risk measured by islet AAs, baseline age, sex and 
glycemic measures. The adoption of this tool is expected to help stimulate drug development 
in T1D prevention. 

5 SUMMARY AND CONCLUSIONS 

Currently, the development of therapies to prevent or delay the onset of T1D remains 
challenging, and there is a lack of qualified biomarkers to identify individuals at risk of 
developing T1D or to quantify the risk of conversion to a diagnosis of T1D. There have been 
significant late-stage failures in the development of therapies in new-onset T1D. In order to 
address this drug development need, the T1DC has 1) acquired, remapped, integrated, and 
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curated existing patient-level data from observational studies and 2) evaluated the utility of 
islet AAs, including IAA, GAD65, IA-2, and ZnT8, as biomarkers to enrich subjects for T1D 
prevention trials using a model-based approach. The TEDDY and TN01 studies were 
aggregated to support the model-based qualification of islet AAs as enrichment biomarkers. 
This aggregated dataset was used to construct and execute a statistical analysis plan to 
develop a time-to-event model for predicting T1D diagnosis. The developed model 
demonstrates that islet AAs are statistically significant predictors of the time-varying 
probability of conversion to a diagnosis of T1D, representing adequate underlying evidence 
for their use as enrichment tools. Further when additional sources of variability, including 
baseline age, sex, blood glucose measurements from the 120-minute timepoints of OGTT, 
and HbA1c, are assessed with the islet AAs, it improves the accuracy of predicting the time-
varying probability of conversion to a T1D diagnosis.  

The proposed COU focuses on the application of islet AAs with other patient features as 
enrichment biomarkers to optimize the selection of subjects for clinical trials of therapies 
intended to prevent or delay the clinical diagnosis of T1D. The focus of this briefing dossier is 
to present the underlying evidence to support this qualification opinion. From a practical drug 
development perspective, the use of islet AAs as enrichment biomarkers can improve clinical 
trial design by informing trial entry criteria, improving stratification approaches, and adding 
more efficiency into the drug development process for critical therapies that may prevent or 
delay T1D. T1DC gratefully acknowledges the EMA for the public posting of the EMA Letter of 
Support, ”Islet autoantibodies as enrichment biomarkers for type 1 diabetes prevention 
studies, through a quantitative disease progression model”, posted on 25 March 2020. A full 
qualification opinion will serve to encourage widespread use of the proposed quantitative tool 
for enrichment strategies and stratification in ongoing and future clinical trials. 
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6 QUESTIONS FOR EMA FOLLOWED BY T1DC’s POSITION 

1. Does EMA agree with the COU? 

T1DC’s position: The proposed COU focuses on the application of islet AAs, together with 
other patient features, as enrichment biomarkers in individuals at risk of developing T1D 
to optimize the selection of individuals for clinical trials of therapies intended to prevent 
or delay the clinical diagnosis of T1D. The focus is on understanding the contribution of 
the positivity to these AAs as predictors of progressing towards a diagnosis of T1D. From 
a practical drug development standpoint, this proposed use is of added value because 
their intended application can help inform the definition of entry criteria, enrichment 
strategies, and stratification approaches in the field of T1D prevention. 

2. Does EMA agree that the data sources are adequate to support the proposed 
COU? 

T1DC’s position: The available data sources, and their integration through data 
standardization and management, represents a unique opportunity to transform these 
data into valuable knowledge to provide the necessary evidence to support the 
qualification of islet AAs for the proposed context of use. The population captured in the 
data sources represents the population likely to be considered as candidates to participate 
in clinical trials of therapies intended to prevent or delay the clinical diagnosis of T1D.  

3. Does EMA agree the AFT survival model and its covariates represent adequate 
evidence for the qualification of islet AAs as enrichment biomarkers for T1D 
prevention trials? 

T1DC’s position: The T1DC believes a survival model construct is adequate because the 
clinically relevant endpoint defined for the proposed model is a binary dependent variable 
and the need to understand the likelihood of conversion to a diagnosis of T1D over the 
course of clinical for prevention or delay of T1D. The proposed survival model evaluating 
the contribution of subject’s positivity to the different islet AAs taken in combination to 
understand the time-varying probability of conversion to a diagnosis of T1D also 
represents an adequate approach to provide the supporting evidence for this intended 
qualification procedure. 

4. Does EMA agree that the validation is adequate? 

T1DC’s position: The k-fold cross-validation approach is an adequate method to assess 
model performance, given all observations are used for training and validation and each 
observation is used for validation exactly once. This approach has been successfully used 
in prior qualification procedures with EMA for different novel methodologies in drug 
development, including biomarkers and quantitative drug development tools. While 
additional validation using published meta-data was not deemed feasible, an additional 
external independent patient-level dataset, (i.e., DAISY), was acquired by the T1DC and 
used to perform patient-level external validation.  This approach provided further evidence 
of robust model performance.   

5. Does EMA agree the presented results represent adequate supporting evidence 
for a qualification opinion?  

T1D Consortium position: The presented results demonstrate that the combinations of 
islet AA for which subjects are seropositive at a sensible baseline for clinical trials 
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independent and statistically significant time-varying predictors of T1D. The presented 
analyses also show that the use of positivity for combinations of islet AAs together with 
measures of glycemic control can help inform the definition of entry criteria, enrichment 
strategies, and stratification approaches for T1D prevention clinical trials. 
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