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1 Executive summary 
Selection of a dose for confirmatory Phase III trials and potential market authorization is 
among the most difficult decisions in the whole development process and poor dose selection 
for confirmatory trials has persisted as a problem in the last decade. One of the main reasons 
for this is an inappropriate knowledge of the dose response relationship (efficacy and safety). 
In this document the MCP-Mod approach for dose response testing and estimation is 
presented that is intended to enable more informative Phase II study designs to provide a more 
solid basis for all subsequent dose selection strategies and decisions (Pinheiro et al., 2010). 

Historically, dose finding studies were designed and analyzed based on multiple pairwise 
comparisons of the active doses against placebo. Such traditional methods are mostly 
performed within the analysis-of-variance hypothesis testing paradigm and known to be 
inefficient in the sense that they fail to fully incorporate the available information across the 
doses (Bornkamp et al., 2007). Modeling approaches assume a functional relationship 
between response and dose, taken as a quantitative factor, according to a certain parametric 
model, such as the Emax model. The fitted model is then used to describe the dose response 
relationship and estimate target doses of interest. Such an approach will often lead to more 
precise estimates of the dose response relationship, due to the interpolation of information 
across doses. In addition, it also provides flexibility in investigating the effect of doses not 
used in the actual study. However, the validity of its conclusions will highly depend on an 
appropriate choice of the dose response model, which in practice is often unknown. The 
MCP-Mod approach considered in this dossier is an approach for dealing with this model-
uncertainty by combining principles of multiple comparisons with modeling techniques to 
overcome some of the shortcomings of applying either approach alone (Bretz et al., 2005).   

The objective of the current submission is to seek qualification of the MCP-Mod approach, as 
an efficient statistical methodology for model-based design and analysis of Phase II dose 
finding studies under model uncertainty. The MCP-Mod approach is efficient in the sense that 
it uses the available data better than traditional pairwise comparisons. The MCP-Mod 
approach impacts both the design and the analysis of dose finding studies; see Figure 3-1 for 
details. At the trial design stage, a suitable set of candidate models is identified in repeated 
clinical team discussions, which also impacts decisions on the number doses, required sample 
sizes, patient allocations, etc. At the trial analysis stage, dose response is tested using suitable 
trend tests deduced from the set of candidate models. Once a dose response signal is 
established, the best model out of the pre-specified candidate model set is then used for dose 
response and target dose estimation. 

A thorough review of the statistical and medical literature is presented in the current 
submission in support of the advantages of the methodology. In addition, we provide the 
results of extensive simulations studies to support the intended claim. In the past years, MCP-
Mod has also been presented to and discussed with several major regulatory agencies, 
including EMA (Modeling & Simulation ITN Briefing Meeting on “Dose Finding Under 
Model Uncertainty” on July 15, 2009 in London; EMEA/457334/2009), FDA (1-day course to 
the CDER/OTS Office of Biostatistics on “Dose Finding Studies: Methods and 
Implementation” on August 12, 2008) and PMDA (half-day seminar on “Improving Dose 
Finding Studies: Principles, Methods, and Regulatory Perspectives” on December 11, 2009). 
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2 Statement of the need for and impact of the proposed novel 

methodology in clinical drug development  

2.1 Statement of the need 
A well-known problem of failed Phase III programs is often poor dose selection resulting 
from inappropriate knowledge of dose response relationship (efficacy and safety) at the end of 
the learning phase of drug development, i.e., Phase II. Selection of a dose (or doses) to carry 
into confirmatory Phase III trials is among the most difficult decisions in drug development. 
Although the exact numbers are unknown, it is believed that the high attrition rate plaguing 
the pharmaceutical industry in Phase III studies are due, at least in part, to inadequate dose 
selection for confirming safety and efficacy in the intended patient population – doses that are 
too low to achieve adequate benefit, as well as doses that are too high and lead to dose-related 
safety events. There is also evidence that, even after registration, dose adjustments in the label 
continue to be required with some frequency (Cross et al. 2002; Heerdink et al. 2002). In a 
broader context than just dose finding, Bayer Healthcare recently reviewed 67 of their in-
house projects at replicating the findings in published research and reported that less than 1/4 
were viewed as having been essentially replicated and over 2/3 had major inconsistencies 
leading to project termination (Prinz et al., 2011). 

In recognition of this problem, the Pharmaceutical Innovation Steering Committee (PISC) of 
the Pharmaceutical Research and Manufacturers of America (PhRMA) formed in the spring of 
2005 several working groups to look into different drivers of the decreasing success rates 
observed in drug development programs across the pharmaceutical industry, identified in a 
previous survey conducted by a consulting group. Among those was the “Adaptive Dose-
Ranging Studies” (ADRS) working group. The objectives of this group were to develop new 
and evaluate novel adaptive and non-adaptive dose-ranging methods (one of them being 
MCP-Mod), and to provide methodological recommendations for industry and regulatory 
agencies on their use in clinical drug development. Details can be found in the white papers 
from the ADRS working group (Bornkamp et al. 2007; Pinheiro et al. 2010). 

The basic difficulty in getting the right dose is the trade-off between wanted and un-wanted 
effects. A prerequisite for informed decision making and dose selection at end of Phase II is 
hence a solid characterization of the dose-response relationships. In the past, dose finding 
studies were often designed using a small number of doses and a narrow dose-range, often 
focused on the upper end of the dose response relationship. Only in recent years there was a 
noticeable shift towards investigating the full dose response relationship and estimating the 
so-called minimum effective dose (MED). The MED denotes the smallest dose achieving a 
pre-specified clinical treatment effect. Knowing the MED is important, because it defines a 
lower bound for therapeutically useful doses and most drugs have increasing potential for 
safety problems as dose is increased. 

Figure 2-1 displays a non-exhaustive set of dose response profiles that are often seen in 
clinical dose finding studies, together with the associated MED (assuming an improvement of 
200 units over the placebo response as the clinical relevance threshold). As seen from Figure 
2-1, the MED depends quite strongly on the true, underlying dose response profile and can 
vary between 50 (for the emax1 model) and 350 (for the linear model).  
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Figure 2-1 Example dose response profiles often seen in clinical dose finding 
studies. Open dots indicate the expected responses at selected dose 
levels. The minimum effective dose (MED) is defined as the smallest 
dose achieving a pre-specified clinical treatment. 

In practice there is not much knowledge about the true underlying dose response profile at the 
time the study is being designed, so the initial dose specification is tentative at best. Thus, 
there is a need to develop efficient statistical methodology for model-based design and 
analysis of Phase II dose finding studies under model uncertainty. 

2.2 Objectives of Phase II dose finding studies 
An indication of the importance of properly conducted (and informative) dose response 
studies is the early publication of the ICH E4 guideline (ICH, 1994), which is the primary 
source of regulatory guidance in this area. The guideline gets very specific already in the 
introduction when it motivates the importance of dose response information: 

Historically, drugs have often been initially marketed at what were later 
recognized as excessive doses ... This situation has been improved by attempts to 
find the smallest dose with a discernible useful effect or a maximum dose beyond 
which no further beneficial effects is seen... 

It becomes transparent from this quote, and the remainder of the ICH E4 guideline, that 
regulatory agencies recognize the need to obtain appropriate dose response information as a 
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critical part of clinical drug development. But even if it is generally agreed that understanding 
the relationships among administered dose, drug-concentration in blood, and clinical response 
is important, setting the objectives for an actual trial may be subject to much debate. For 
example, Ruberg (1995a, b) and subsequently Bretz et al. (2008) considered the following 
questions to be relevant in the context of dose finding: 

1. Is there any evidence of a drug effect? 
The detection of a dose response signal is often related to the determination of proof-
of-concept (PoC) in a development program. This is a critical decision point, since a 
positive PoC coupled with a subsequent commitment to go into full development leads 
to substantial investment of resources. 

2. What doses are (relevantly) different from control? 
This question is closely connected to the estimation of a minimum effective dose, that 
is, “the smallest dose with a discernible useful effect” (ICH, 1994). If confirmatory 
pairwise comparisons with a control are of main interest (such as in Phase III trials), 
multiple comparison procedures may be appropriate to answer this question. 

3. What is the dose response relationship? 
This question is broader than the previous one in the sense that it asks for a complete 
functional description of the dose response relationship. If this is of main interest, 
modeling approaches may be appropriate to take full advantage of the observed data. 
Understanding the dose response relationship is particularly important when it is 
necessary to pick a lower dose because of safety concerns observed in an actual study. 

4. What is the optimal dose? 
Although very natural, this question is likely to be the most difficult to answer. In 
practice this question may not even be well defined in the sense that different 
stakeholders may have a different understanding of what “optimal dose” means. In all 
circumstance, any answer to this question will be a trade-off between efficacy 
considerations, tolerability and safety concerns and regimen convenience. 

2.3 Overview of statistical analysis methods 
The analysis of dose finding studies can be classified into two major strategies: multiple 
comparison procedures (Bretz et al., 2010) and modeling techniques (Pinheiro et al., 2006a).  

Multiple comparison procedures regard the dose as a qualitative factor and make few, 
relatively weak assumptions about the underlying dose response profile. Multiple comparison 
procedures can be used for detecting an overall dose related signal, as well as for estimating 
target doses of interest. Stepwise testing strategies can be applied which preserve the overall 
Type I error rate at a pre-specified level α. Such procedures are relatively robust to the 
underlying dose response profile, but they are not designed for extrapolation of information 
beyond the observed dose levels. Inference is thus confined to the selection of the target dose 
among the dose levels under investigation. Multiple comparison procedures are often used to 
address Questions 1 and 2 from Section 2.2. 
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Modeling approaches make better use of the available information as they interpolate 
information across doses instead of treating every dose separately. They hence consider dose 
as the continuous variable it truly is. The drawback of modeling approaches is their 
dependence on the assumed model: Any inference (e.g. target dose estimation) depends on the 
employed dose response model and can be highly sensitive to its choice. Because the dose 
response model and its parameters are unknown prior to a clinical study, one is faced with 
model uncertainty, a problem which is often underestimated. A common approach is to fit 
several dose response models once the data have been observed and select the best fitting 
model. However, such a naïve approach does not account for model uncertainty and can lead 
to undesirable effects due to data dredging, such as overfitting, biased treatment effect 
estimates and over-optimistic analysis results; see Chatfield (1995), Draper (1995), and 
Hoeting et al. (1999). 

Hybrid dose finding methods that combine principles of multiple comparisons with modeling 
techniques have recently been investigated to overcome some of the shortcomings of applying 
either approach alone. An early reference is Tukey et al. (1984), who recognized that the 
power of standard hypotheses tests to detect a dose response signal depends critically on the 
unknown dose response relationship and developed trend tests to take this uncertainty into 
account. They proposed to simultaneously use several trend tests and subsequently to adjust 
the resulting p-values for multiplicity. Bretz et al. (2005) proposed an extension of this 
methodology, denoted MCP-Mod, which provides the flexibility of modeling for dose 
estimation, while preserving the robustness to model misspecification associated with 
multiple comparison procedures. The principles underlying the MCP-Mod approach are 
outlined in Section 2.4. A detailed technical description with several extensions is given in 
Section 3. 

Some authors have investigated semi-parametric or non-parametric approaches to alleviate the 
model dependency problem and enhance the robustness of the dose response estimation; see 
Kelly and Rice (1990); Mukhopadhyay (2000); Dette et al. (2005); Bornkamp and Ickstadt 
(2009); Yuan and Yin (2011) among many others. These methods allow descriptions of dose 
response relationships that do not depend on fully specified parametric models. However, 
their applicability in dose response studies is limited because some of these methods require 
observations on a rather dense set of different dose levels, which are rarely available in 
practice. Due to logistic and ethical reasons, the number of different dose levels is often in the 
order of 5 (Bornkamp et al., 2007) and therefore nonparametric methods may not yield 
reliable results in the context of clinical dose finding studies. 

2.4 Principles of the MCP-Mod approach 
The MCP-Mod approach provides a unified strategy for addressing the key questions in dose 
finding trials, as outlined in Section 2.2. More specifically, it provides an efficient statistical 
methodology for model-based design and analysis of Phase II dose finding studies 
acknowledging model uncertainty through the following steps: (i) testing for the presence of a 
dose response signal, (ii) selecting the best dose response model for the observed data out of a 
pre-specified set of candidate models, and (iii) estimating target doses of interest (e.g., the 
minimum effect dose, MED) via modeling.  
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Figure 2-2 High-level overview of the MCP-Mod approach 

 

Figure 2-2 gives a high-level overview of the MCP-Mod approach, showing the steps needed 
at the trial design stage and the trial analysis stage. At the trial design stage the clinical team 
needs to decide on the core aspects of the trial design, as in any other trial. Specific to the 
MCP-Mod approach is the need to pre-specify a candidate set of plausible dose response 
models, in discussion with the clinical team, based on available pharmacologic information, 
dose response information from similar compounds, data from earlier trials etc.; see Table 6-1 
in the Appendix for a list of commonly used dose response models. This candidate set then 
gives rise to a set of optimal contrasts used to test for the presence of a dose response signal 
(see Section 3 for technical details). In case of large model uncertainty, this candidate set 
should be chosen to cover a large and diverse set of plausible dose response shapes. Sample 
size calculations at the trial design stage could be based either on power considerations (e.g. 
to achieve a pre-specified probability of establishing a true dose response signal) or on a pre-
specified precision to estimate the dose response relationship or a target dose of interest (e.g. 
the expected confidence interval width for the MED estimate). 

The trial analysis stage consists of two main steps: The MCP and the Mod step. The MCP step 
focuses on establishing evidence for a drug effect across the doses, i.e. detecting a statistically 
significant dose response signal for the clinical endpoint and patient population investigated in 
the study. This step will typically be performed using an efficient test for trend, adjusting for 
the fact that multiple candidate dose response models are being considered. If a statistically 
significant dose response signal has been established, one proceeds with determining a 
reference set of significant dose response models by discarding the non-significant models 

Trial analysis stage 
• “MCP” step  
o Assessment of a dose response signal using a suitable test for trend 
o If significant, model selection (or model averaging) out of the set of statistically 

significant dose response models 
• “Mod” step  
o Dose response and target dose estimation based on the selected model(s) 

Trial design stage 
• Determination of the endpoint, study population, etc. for which the dose response 

relationship should be established 
• Pre-specification of candidate set of dose response models. This may be informed by 

prior information from similar compounds or knowledge of the mechanism. 
• Sample size calculation, based on either power considerations to establish a dose 

response signal or the precision in dose response / target dose estimation 

Data collection 
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from the initial candidate set. Out of this reference set, a best model is selected for dose 
estimation in the last stage of the procedure. The selected dose response model is then 
employed to estimate target doses and possibly incorporating information on clinically 
relevant effects. The precision of the estimated doses can be assessed using, for example, 
bootstrap methods. 

In contrast to a direct application of modeling dose estimation, the MCP step accounts for 
possible model mis-specification and includes the associated statistical uncertainty through a 
hypothesis testing context. Note that different model selection criteria may lead to different 
dose estimates due to different sources of information and/or decision goals: Information 
criteria, such as the Akaike Information Criterion (AIC) or the Bayesian Information Criterion 
(BIC), are statistical decision rules taking only the data from the study into account; Bayesian 
decision rules may additionally include information external to the study, though still based 
on statistical reasons; non-statistical selection rules may also be applied and can be based on 
updated clinical knowledge, economic reasons, etc. 

The MCP-Mod approach displayed in Figure 2-2 is very flexible and can be tailored to the 
actual needs of a given Phase II study. For example, if substantial prior knowledge about the 
dose response model is available, the candidate set could consist of only one single dose 
response model (e.g. Emax). In such cases, the main goal might be to establish a dose 
response signal or to estimate the rough shape of the dose response relationship. At the trial 
analysis stage, there are several possibilities of performing an efficient trend test. The multiple 
contrast test approach described in Section 3 has several advantages, although other methods 
are also available, such as employing likelihood ratio tests (Dette et al., 2013). In some 
applications, the number of doses might not be sufficient to support the Mod step. Also, 
instead of a selecting a single dose response model and proceed with the Mod step, one could 
use one of several model averaging techniques (Buckland et al., 1997). In Section 3 we 
provide the technical details of the original proposal by Bretz et al. (2005), which focused on 
a single normally distributed endpoint, and further describe several variants thereof.  

2.5 In-scope and out-of-scope of this request 
In its currently available version, the MCP-Mod methodology is best used in trials satisfying 
certain characteristics: 

• Drug development stage: Phase II dose finding studies to support dose selection for 
Phase III 

• Response: Univariate (efficacy or safety/tolerability) variable. For efficacy, the 
response variable is ideally predictive to the clinical Phase III efficacy outcome. Could 
be a binary, count, continuous or time-to-event endpoint. Observations could be cross-
sectional (i.e. from a single time point) or longitudinal. 

• Dose: Typically, the dose levels utilized in the actual trial are used for the design and 
analysis. However, more broadly “dose” could be any univariate, continuous, 
quantitative measurement, as long as an ordering of the measurements is possible and 
the differences between measurements are interpretable. For example, sometimes it is 
possible to convert b.i.d. and o.d. regimen to a common univariate scale. 
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• Number of doses: For the Mod step, a minimum of four distinct doses (including 
placebo) is required, ideally distributed over the effective range. For the MCP step (e.g. 
for dose response signal testing or identifying the type of plausible dose response 
shapes), at least three distinct doses (including placebo) are needed. 

The framework covered in this request includes parallel group and more complex (crossover, 
etc.) designs. Applications to studies without a placebo group and/or with an active control 
group are possible. One or multiple interim analyses (e.g. for futility stopping or response-
adaptive dose allocations) are possible (and often advisable). 

Examples of trial designs and modeling approaches which are out of scope for this request or 
where only limited experience is available include, among others: 

• Predictions from a surrogate / biomarker or short term readout to a clinical Phase III 
endpoint.  

• Exposure-response analyses or PK-PD models are possible (if appropriate models are 
available) but not the purpose of this request per se. 

• Titration designs and dose escalation studies (e.g. to estimate the maximum tolerable 
doses using continual reassessment methods). 

• Regimen finding for long acting biologics where there is no steady state. 

• Application of MCP-Mod in confirmatory studies. 

• Multivariate problems, such as the joint modeling of efficacy and toxicity, the 
presence of two primary endpoints, or drug combination trials. 

Although, as of yet, there is limited experience with the use of MCP-Mod in pediatric trials at 
Novartis (or other companies we are aware of), the methodology is potentially as useful in this 
setting as in adult dose finding. In fact, the more stringent ethical and resource constraints 
typically present in pediatric development programs make the use of information-efficient 
methods like MCP-Mod even more appealing. Typically only few patients and few data are 
available for pediatric trials. To increase the efficiency of pediatric dose-finding studies 
different alternatives could be envisaged like including age (or weight) as a covariate in the 
model, adaptive dose-finding studies with interim analyses, and the use of longitudinal data 
and dose-exposure response studies. More discussions and, possibly, methodological research 
are needed to further promote the use of MCP-Mod in pediatric dose finding programs and its 
inclusion in Pediatric Investigational Plans (PIPs). 

3 Methodology and results 

3.1 Methods 
As a concrete illustration of the general MCP-Mod approach described in Section 2.4, we 
provide in Section 3.1.1 a short, technical description of the original MCP-Mod procedure 
(Bretz et al., 2005) for a single, normally distributed efficacy endpoint, and describe its 
implementation in the DoseFinding package in R, which is freely available from www.r-
project.org. In Section 3.1.2 we describe recently developed variants of MCP-Mod that 

http://www.r-project.org/
http://www.r-project.org/
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include adaptive dose finding techniques and dose finding for general parametric models (e.g. 
for time-to-event endpoints and including longitudinal data modeling). 

3.1.1 Original MCP-Mod procedure 
The original MCP-Mod procedure for a single, normally distributed efficacy endpoint is 
implemented in five steps; see also Figure 3-1, which complements the high-level overview 
from Figure 2-2 for this concrete case. 

1. Identify several candidate parametric models, which are likely to represent the 
underlying dose response shape. 

2. Derive optimum contrast coefficients, such that the marginal power to detect a specific 
dose response shape associated with the respective candidate model is maximized. 

3. Evaluate the significance of the individual models in terms of a multiple contrast test 
based on the previously derived optimal contrast coefficients. 

4. Select a candidate model associated with the most significant contrast test, or other 
model selection criteria such as AIC or BIC (provided statistical significance has been 
shown in the previous step). Alternatively, multiple significant models can be selected 
if model averaging is preferred. 

5. Use the selected model(s) to produce inferences on adequate doses, employing a 
model-based approach. 

The results from this analysis may then form the quantitative basis for selecting the dose for 
the Phase III program. In practice, selection of one or more doses to advance into Phase III 
clinical trials is one of the most challenging decisions during drug development and will 
typically involve both qualitative and quantitative considerations. 
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Figure 3-1 High-level overview of the original MCP-Mod procedure from Bretz et 
al. (2005) for a single, normal distributed efficacy endpoint.  

In the following we describe the individual steps of the MCP-Mod approach in more detail. 
To this end, assume a primary response variable y for a given set of parallel groups of patients 
corresponding to active doses d2, d3, ..., dk plus placebo d1, for a total of k arms. For the 
purpose of dose response signal testing and estimating target doses, we consider a one-way 
layout for the model specification 

yij = μᵢ + εij, εij ~ N(0, σ²),  j = 1, …, ni, i = 1, …, k, 

where the mean response at dose di can be represented as μi = µ(di, θ) for some dose response 
model µ(.) parameterized by a vector of parameters θ, ni denotes the number of patients 
allocated to dose di, and εij is the error term for patient j within dose group i (assuming 
independent residuals). We note that most dose response models used in practice can be 
written as µ(d, θ) = θ0 + θ1f0(d, θ2), and f0(d, θ2) is a, typically a nonlinear, transformation of 
the dose levels depending on θ2. The parameters θ0 and θ1 determine location and scaling of 
the function f. An example for f0 is f0(d, θ2) = d/(d + θ2), resulting in the (hyperbolic) Emax 
model and where θ2 is the ED50 parameter of the Emax model. More dose response models 
are given in Table 6-1 in the Appendix. 

The first step of MCP-Mod is to identify a set of M parameterized candidate models together 
with prior parameter values for their standardized versions. When used with the doses planned 
for the trial, d1, …, dk, these candidate models produce mean response vectors μm = (μm1, …, 
μmk), where μmi = μm(di, θ2m) with a specified parameter θ2m and μm is the m-th dose 
response function, m = 1, …, M.  

The second step is to test each of the dose response shapes in the candidate set using a single 
contrast test, with coefficients chosen to maximize the power of the test when the true 
underlying mean response equals μm. This approach formulates the test for a dose response 

Trial design stage 

Trial analysis stage 
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trend in terms of a linear contrast hypothesis c´μ, where c is a contrast vector subject to Σi ci = 
0 and μ is the true mean at the dose levels. For a given vector μ, optimum contrast coefficients 
for model testing are proportional to ni(μi – μ*), i = 1, …, k, which after normalization lead to 
the unique solution (up to the sign) c/||c||, where μ* = μ´1/k. Each of M possible dose response 
shapes now gets represented by one contrast cm = (cm1, …, cmk)´. The contrast coefficients for 
the m-th shape are specified at the trial design stage, such that they maximize the power to 
detect the m-th expected dose response shape. For example, a linear contrast test for equally 
spaced doses and balanced patient allocation is defined such that the difference of any two 
adjacent contrast coefficients is a constant. Assuming that the linear model has been included 
in the candidate model set, the linear contrast test is then a powerful test to detect the linear 
trend. Similarly, any dose response relationship characterized through μm can be tested 
equally powerfully by selecting an appropriate contrast test, whose coefficients are defined in 
dependence of the assumed μm. Note that contrast tests are shift and scale invariant, and thus 
it is sufficient to work with the standardized modeling functions f. 

The third step is to test for an overall dose response signal. The single contrast tests are 
defined as  

 

where  denotes the mean squared error and N = Σi ni the 
total sample size. Under the null hypothesis H: c´μ = 0 of no dose response effect, i.e. μ1 = … 
= μk, and under the distributional assumptions from above, T1, …, TM jointly follow a central 
multivariate t distribution with N – k degrees of freedom and the correlation matrix only 
depends on the sample sizes and the correlations between the different contrasts. Note, that for 
the data analysis step the critical value, contrast weights, etc. cannot be taken over from the 
design stage due to drop-outs, covariate effects, etc. In practice these computations have 
therefore to be re-done at this point. 

The final test statistic Tmax is based on the maximum contrast test, i.e., Tmax = maxm Tm. A 
dose response signal is verified if this maximum statistic Tmax, and thus at least one single 
contrast test, is statistically significant while controlling the familywise error rate (FWER) at 
pre-specified level α. Let q1−α denote the multiplicity adjusted critical value. A dose response 
signal is then established if Tmax ≥ q1−α. In fact, any dose response model with a test statistic 
larger than q1−α can be declared statistically significant at level α. These models then form a 
reference set {M1, …, ML} of L significant models, provided L ≥ 1. Every single contrast test 
thus translates into a decision procedure, whether a selected dose response curve is significant 
given the observed data, while controlling the FWER at pre-specified level α. If no candidate 
model is statistically significant, the MCP-Mod procedure stops indicating that a dose 
response signal cannot be established from the observed data. But such a result does not 
necessarily mean that the compound has no effect at all. In general we will assess that there 
was not enough evidence to get statistical significance. Possible reasons could include small 
sample sizes or high variance. In addition, the initial candidate set might have been poorly 
chosen, such that the candidate models do not fit the true curve (perhaps an umbrella-shaped 
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curve) – although in such cases the compound has a pronounced effect and may be far from 
ineffective, as suggested by the insignificant p-value. 

The fourth step is to select one model out of the reference set of L significant models, 
provided significance has been shown in the previous step. The selected model could be 
associated with the most significant contrast test, or other model selection criteria such as AIC 
or BIC. Alternatively, multiple significant models can be selected if model averaging is 
preferred (Buckland et al., 1997). Note that in contrast to a direct application of a model based 
approach (which can lead to biased estimates and over-optimistic analysis results; see Section 
2.3), the preliminary steps of the MCP-Mod procedure address issues of possible model 
misspecifications and include the associated statistical uncertainty in a rigorous hypothesis 
testing framework. 

The fifth and final step consists of fitting the selected model to the data and estimating 
adequately the target dose(s) of interest using standard inverse nonlinear regression 
techniques. 

3.1.1.1 DoseFinding package in R 
We illustrate the basic principles of MCP-Mod using a simple numerical example with a 
homoscedastic normally distributed endpoint. To this end, we use the DoseFinding 
package in R, which provides an implementation of the MCP-Mod approach. A compiled 
version and the source code of the package are freely available from the Comprehensive R 
Archive Network (CRAN) servers; see http://cran.r-project.org/package=DoseFinding. This 
ensures reproducibility and transparency of the underlying calculations. The DoseFinding 
extends the earlier MCPMod package described in Bornkamp at al. (2009). The package 
includes functions for the design and analysis of dose finding trials. All code and analyses 
were produced with version 0.9-6 of the DoseFinding package. 

Currently, the main functions to design a dose finding study include: 

• powMCT: Calculates the power of a multiple contrast test under specified dose 
response shapes. 

• sampSizeMCT: Calculates the sample size necessary to achieve a specific power for 
a given multiple contrast test under pre-specified dose response shapes. 

• optDesign: Calculates optimal designs (allocation of doses and patient allocation 
weights) for dose response estimation (D-optimality) and target dose estimation (TD-
optimality). 

The main analysis functions in the package are: 

• MCTtest: Performs multiple contrast tests for dose response signal detection.  

• fitMod: Fits nonlinear dose response models and provides the estimated dose 
response curve. 

• MCPMod: Wrapper function that calls MCTtest, then fits dose response models using 
the fitMod function and selects one (or more) suitable models according to a 

http://cran.r-project.org/package=DoseFinding
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specified model selection criterion. Finally, it provides estimates of the dose response 
curve and target doses of interest. 

The DoseFinding package hence provides all the tools necessary to design and analyze a 
dose finding study using MCP-Mod. It is written in a modular form that can easily be 
extended to cover non-standard situations, as illustrated with the example in Section 3.1.2.3. 

3.1.1.2 Example 
We use the biom dataset from the DoseFinding package to illustrate the MCP-Mod 
methodology. The data set contains a total of 100 patients being allocated to either placebo or 
one of four active doses coded as 0.05, 0.20, 0.60, and 1, with 20 per group. The response 
variable was assumed to be normally distributed and larger values indicate a better outcome. 

The first step of MCP-Mod is to identify the candidate model set, which can be done with the 
Mods function. In practice, identifying the candidate model set is the result of a highly 
interactive and iterative clinical team discussion, using all available information and 
plausibility arguments. Here, we select the candidate set to include two concave shapes being 
the linear-in-log and the quadratic shape (with δ = -0.83, leading to an umbrella shape with 
the maximum treatment effect occurring at dose 0.6), a convex shape using an exponential (δ 
= 0.4), and the linear shape; see Table 6-1 in the Appendix for details on the model 
parameterizations. The shapes can be specified and visualized with DoseFinding using the 
following code: 
> ## load DoseFinding package 

> library(DoseFinding) 

> doses <- c(0,0.05,0.2,0.6,1) ## doses in the study 

> ## define candidate set 

> candMod <- Mods(linlog=NULL, linear=NULL, quadratic=-0.83, exponential=0.4, doses=doses) 

> ## plot candidate set 

> plot(candMod, placEff = 0, maxEff = 1) 
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Figure 3-2 Display of candidate candidate dose-response shapes 

After the study is completed and data have been obtained, one can use the MCP-Mod function 
to analyze the data. The function needs as input the dose and response values, the candidate 
models and the clinical relevance threshold Δ to perform target dose estimation (in this 
example we assume Δ = 0.4). To run the MCP-Mod analysis, the following code can be used: 
> data(biom) ## load data 

> ## fit MCPMod 

> MMfit <- MCPMod(dose, resp, models = candMod, data=biom, Delta = 0.4) 

> MMfit 

MCPMod 

 

Multiple Contrast Test: 

            t-Stat   adj-p 

linlog       3.411 0.00104 

quadratic    3.202 0.00206 

linear       2.972 0.00442 

exponential  2.418 0.02010 

 

Estimated Dose Response Models: 

linlog model 

   e0 delta  

0.975 0.146 
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linear model 

   e0 delta  

0.492 0.559  

 

quadratic model 

    e0     b1     b2  

 0.390  1.768 -1.232  

 

exponential model 

   e0    e1 delta  

0.511 0.833 2.000  

 

Selected model (AIC): linlog 

 

Estimated TD, Delta=0.4 

     linlog      linear   quadratic exponential  

     0.1455      0.7161      0.2813      0.7843 

One can observe that the linear-in-log shape has the largest contrast test statistic but also all 
other dose response shapes are significant. Hence, all dose response models proceeded to the 
model estimation step, with the estimated model parameters been shown in the output. The 
linear-in-log model is ultimately selected when applying AIC model selection to determine a 
single dose response model out of the selected model set. The estimated target doses, giving 
an improvement of 0.4 over placebo under the different models are shown in the last line of 
the output. More information on the fitted models can be obtained by calling 
summary(MMfit) or by directly observing the content of the MMfit object. A graphical 
depiction of the fitted dose response model can be obtained via: 
## plot resulting model-fit 

plot(MMfit$mods$linlog, CI=TRUE, plotData = "meansCI", lwd=2) 

This concludes the MCP-Mod analysis. In practice, these study results, together with further 
dose response analyses on other efficacy and/or safety endpoints, would provide the 
quantitative basis for (i) the decision to advance into Phase III and (ii) the dose(s) being 
selected in future studies. 
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Figure 3-3 Linear in log model fitted to the biom dose-response data with 
pointwise 95% confidence intervals for the fitted curve and the 
corresponding ANOVA based pointwise 95% confidence intervals 

3.1.2 Variants  
The original MCP-Mod procedure from Bretz et al. (2005) was motivated by the work of 
Tukey et al. (1984), who proposed to simultaneously use several trend tests based on different 
functional dose response descriptions and to subsequently adjust the resulting p-values for 
multiplicity. Since then, the methodology has been subject of several investigations. Pinheiro 
et al. (2006b) discussed practical considerations regarding the implementation of this 
methodology, including sample size calculations for the MCP part. Neal (2006) and Wakana 
et al. (2007) investigated extensions to Bayesian methods for estimating or selecting the dose 
response curve from a sparse dose design. Dette et al. (2008) constructed optimal designs for 
MED estimation to determine the optimum location of doses and allocation of patients to the 
individual dose levels, taking model uncertainty into account. Klingenberg (2009) applied the 
MCP-Mod approach to proof-of-concept studies with binary responses. Benda (2010) 
proposed a time-dependent dose finding approach with repeated binary data. Akacha and 
Benda (2010) investigated the impact of dropouts on the analysis with recurrent event data. 
Tao (2010) applied the MCP-Mod procedure in joint modeling of efficacy and safety 
endpoints in Phase II studies. Wouters (2012) extended the MCP-Mod approach to investigate 
longitudinal toxicological data. Dette et al. (2013) investigated the use of likelihood ratio tests 
instead of contrast tests. Miller (2010), Tanaka (2011) and Tanaka and Sampson (2013) 
extended the MCP-Mod approach to flexible two-stage designs that include the possibility to 
perform adaptations (e.g. adding or dropping doses) under a strict FWER control. In the 
following we describe two variants of the MCP-Mod procedure in more detail. First, we 
describe its use in response-adaptive dose finding studies. Second, we describe its use for 
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general parametric models (e.g. for time-to-event endpoints and including longitudinal data 
modeling).  

3.1.2.1 Response-adaptive dose finding 
Dragalin et al. (2010) and Bornkamp et al. (2011) investigated the MCP-Mod procedure in 
response-adaptive designs, addressing two major challenges in dose-finding studies: 
uncertainty about the dose response models and large variability in parameter estimates. To 
allocate new cohorts of patients in an ongoing study, optimal designs are used that are robust 
under model uncertainty. In addition, a Bayesian shrinkage approach is used to stabilize the 
parameter estimates over the successive interim analyses used in the adaptations. This 
approach allows calculating updated parameter estimates and model probabilities that can 
then be used to calculate the optimal design for subsequent cohorts. The resulting designs are 
hence robust with respect to model misspecification and additionally can efficiently adapt to 
the information accrued in an ongoing study. Bornkamp et al. (2011) focused on adaptive 
designs for estimating the minimum effective dose, although alternative optimality criteria or 
mixtures thereof could be used, enabling the design to address multiple objectives; see 
Dragalin et al. (2010). An alternative approach to use MCP-Mod in adaptive dose finding is to 
use decision rules that are fine-tuned to the specific trial considerations. For example, Mercier 
et al. (2013) described a real case study of a two-stage design. For decision making at interim 
different hypothetical scenarios of the observed dose response shape were set up, and for each 
scenario a corresponding design for the second stage was pre-specified. At the interim 
analysis one then observes to which scenario the observed data correlate best, and the 
corresponding design is then selected for the second stage of the trial. An example of such a 
rule could be to include a lower dose at interim if all active doses at the interim are on the 
plateau of the dose response curve, which was the case in the actual study described in 
Mercier et al. (2013). 

3.1.2.2 MCP-Mod for general parametric models 
In practice the modeling situation and study design are more complex than described in 
Section 3.1.1. For example, the response variable might be a count, binary or time-to-event 
variable instead of being normally distributed. In addition, the final analysis has usually to be 
adjusted for relevant covariates (e.g. region, age, …), patients measurements are often 
recorded over time (necessitating the use of longitudinal models), and patients might receive 
more than one treatment (such as in cross-over or incomplete block designs). The core ideas 
of MCP-Mod remain applicable in these situations, as sketched in the following and laid out 
in Pinheiro et al. (2013) in more detail.  

Let y denote the response vector of an experimental unit in the trial (e.g., a patient) which has 
been assigned a dose d (the formulation can easily be extended to the case of multiple doses). 
We assume that the residual distribution function is given by y ~ F(z, η, μ(d)) where μ(d) 
denotes the dose response parameter, η the nuisance parameters, and z possible covariates. 
The key features of MCP-Mod can then be formulated with respect to μ(d), including: 

• accounting for uncertainty in the dose response model via a set of candidate dose 
response models, 
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• testing for a dose response signal via optimal contrasts based on plausible dose 
response shapes, 

• model selection or model averaging to combine different models, and 

• dose response estimation and dose selection using nonlinear regression. 

Because all dose response information is assumed to be represented by μ(d), the 
interpretability of this parameter is critical for communicating with clinical teams, choosing 
candidate dose response shapes, specifying clinically relevant effects, etc. As an example 
consider the Weibull distribution: It is typically parameterized by a scale parameter λ and 
shape parameter α, neither of which is easily interpretable. For the purpose of interpretability, 
the model could be re-parameterized in terms of the median time to event μ = log(2)1/α/λ and α, 
and then use μ as an interpretable dose response parameter. 

Let  denote the vector of estimated dose response parameters under an analysis-of-variance 
(ANOVA) parameterization, obtained using the appropriate estimation method for the general 
parametric model above via maximum likelihood (ML), generalized estimating equations, 
partial likelihood, etc. The key assumption needed for this general version of MCP-Mod to 

work is that one can extract estimates of the dose response of form , where S 

denotes the variance-covariance of . This assumption can be shown to hold for most 
parametric estimation problems, such as, generalized linear models, parametric time-to-event 
models, mixed-effects models, etc. The MCP step consists of specifying a set of candidate 
models for the dose response relationship μ(d). Similar to the original MCP-Mod approach, 
each of the candidate model shape determines an optimal contrast for a trend test to evaluate 
the associated dose response model signal. The optimal contrasts are applied to the previously 
described ANOVA-type estimates , with the associated asymptotic distribution used for 
implementing the corresponding tests (i.e., critical values and p-values). It can be shown that 
the (optimal) contrast for testing the hypothesis that c’μ = 0 with maximal power for a single 
given candidate model shape µm is given by S-1(µm - (µm’S-11)/(1’S-11)), which generalizes 
the formula given in Section 3.1.1. Once a dose response signal is established, one proceeds to 
the Mod step, fitting the dose response profile and estimating target doses based on the 
models identified in the MCP step. There are many ways to fit the dose response models to 
the observed data, including approaches based on maximizing the likelihood or the restricted 
likelihood. Pinheiro et al. (2013) suggested an alternative two-stage approach to dose response 
model fitting based on generalized least squares, which has some computational advantages. 
Although this approach relies on asymptotic results, it has the appeal of being a general 
purpose application, as it depends only on  and , and is implemented in the 
DoseFinding package in R. 

3.1.2.3 Example 
This example is taken from Pinheiro et al. (2013) and illustrates some of the generality of 
MCP-Mod described in Section 3.1.2.2 as well as its implementation in R using the nlme and 
DoseFinding packages. This example refers to a Phase II clinical study of a new drug for a 
neurodegenerative disease. The state of the disease is measured through a functional scale, 
with smaller values corresponding to more severe neurodeterioration. The goal of the drug is 
to reduce the rate of disease progression, which is measured by the linear slope of the 
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functional scale over time. We first describe the statistical model and then illustrate the MCP-
Mod procedure with a simulated dataset. 

The functional scale response is assumed to be normally distributed and, based on historical 
data, it is believed that the longitudinal progression of the functional scale over the one year 
of follow up can be modeled by a simple linear trend. An alternative analysis would be to use 
the change from baseline after one year as an endpoint and use the methods described in 
Section 3.1.1, although such a cross-sectional analysis would not use all available data. 

We consider a mixed-effects model representation for the functional scale measurement yij on 
patient i at time tij: 

yij = (β0 + b0i) + (μ(di) + b1i)tij + εij, (b0i,b1i)´ ∼ N(0, Λ) and εij ∼ N(0, σ2). 
That is, every patient suffers over time (t) from a disease progression on the functional scale 
according to a linear regression with patient specific intercept β0 + b0i and slope μ(di) + b1i, 
where the slope depends on the assumed dose via μ(d). If μ(d) is represented by a linear 
function of dose d, this is a linear mixed-effects (LME) model, else it becomes a nonlinear 
mixed-effects (NLME) model. The dose response parameter in this case is the linear slope of 
disease progression μ(d) on which the MCP-Mod procedure will be applied.  

The research interest in this study focuses on the treatment effect on the linear progression 
slope. Without going into the detailed rationale for the chosen doses and sample size, we 
assume that the trial design includes placebo and four doses, 1, 3, 10, and 30 mg, with 
balanced allocation of 50 patients per arm. Patients are followed up for one year, with 
measurements of the functional scale being taken at baseline and every three months 
thereafter. The study goals are to (i) test the dose response signal, (ii) estimate the dose 
response and (iii) select a dose to be brought into the confirmatory stage of the development 
program.  

At the planning stage of the trial, the following assumptions were agreed with the clinical 
team for the purpose of the design:  

• Natural disease progression slope is –5 points per year.  

• Placebo effect is 0 (i.e., no change in natural progression).  

• Maximum improvement over placebo within dose range is a 2 points increase in slope 
over placebo.  

• Target (clinically meaningful) effect is 1.4 points increase in slope over placebo.  

Plausible values for the variance-covariance parameters were obtained from historical data as 
follows: var(b0i) = 100, var(b1i) = 9, corr(b0i,b1i) = –0.5, and var(εij) = 9. The ANOVA-type 
estimate  of μ = (μ0mg, μ1mg, μ3mg, μ10mg, μ30mg)´ will hence consist of the linear progression 
slopes for the 4 treatment groups. For interpretability it might be simpler to think of it as 
change from baseline (since for t = 1 these two quantities are identical). 
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Figure 3-4 Candidate models for the neurodegenerative disease example 

 

From discussions with the clinical team, the four candidate models displayed in Figure 3-4 
were identified for the linear progression slopes; see Table 6-1 in the Appendix for the formal 
model definitions used in the following: 

• Emax model with 90% of the maximum effect at 10 mg, corresponding to an ED50 = 
1.11  

• Quadratic model with maximum effect at 23 mg, corresponding to a standardized 
model parameter δ = –0.022  

• Exponential model with 30% of the maximum effect occurring at 20 mg, 
corresponding to a standardized model parameter δ = 8.867  

• Linear model  

We use the simulated dataset to illustrate the MCP-Mod procedure in this situation, with an 
Emax dose response profile imposed on the linear slopes μ(d). The dataset is available via 
data(neurodeg) in the DoseFinding package. Figure 3-5 shows the simulated data per 
dose and patient.  
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Figure 3-5 Simulated data for the neurodegenerative disease example. Gray lines 
correspond to individual patient profiles, black line to a loess 
smoother. 

 

The μ vector of slopes is estimated via an LME fit of data, which can be done, for example, 
using the lme function in the nlme package in R, as illustrated below. 
> data(neurodeg) 

> head(neurodeg, n = 3) 

      resp id dose time 

1 191.7016  1    0    0 

2 178.3995  1    0    3 

3 167.3385  1    0    6 

> fm   <- lme(resp ~ as.factor(dose):time, neurodeg, ~time|id) 

> muH  <- fixef(fm)[-1]     # estimated slope 

> covH <- vcov(fm)[-1,-1]   # var-cov of slopes 

The estimated slopes for the simulated data are (–5.099, –4.581, –3.220, –2.879, –3.520)´. 
The corresponding estimated variance-covariance matrix S with compound symmetry 
structure has diagonal elements 0.149 and off-diagonal elements 0.009.  

The optimal contrasts corresponding to the candidate models are calculated using the formula 
given in Section 3.1.2.2, with S given by the estimated variance-covariance matrix of . The 
DoseFinding package includes the function optContr to calculate the optimal contrasts 
as  
> # define candidate models 

> doses <- c(0, 1, 3, 10, 30) 

> mod <- Mods(emax = 1.11, quadratic=-0.022, exponential = 8.867, linear = NULL, 

>             doses = doses) 
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> contMat <- optContr(mod, S=covH) # calculate optimal contrasts 

The MCTtest function in the DoseFinding package implements the optimal model 
contrast tests for  based on the multiple comparison approach described in Section 3.1.2.2. 
In the call below, doses, mod, and optCg are R objects representing respectively the doses, 
candidate models, and optimal contrasts for the study.             
> MCTtest(doses, muH, S=covH, type = "general", critV = T, contMat=contMat) 

. . . 

Multiple Contrast Test: 

            t-Stat  adj-p 

emax         4.561 <0.001 

quadratic    3.680 <0.001 

linear       2.274  0.025 

exponential  1.277  0.181 

 

Critical value: 2.272 (alpha = 0.025, one-sided) 

The quadratic and Emax model contrasts are significant, the linear model is borderline non-
significant, and the exponential model clearly failed to reach significance at the 2.5% level. 
Therefore, the significance of a dose response signal is established and we can move forward 
to estimate the dose response profile and the target dose reaching the clinically relevant effect 
of 1.4.  

Different approaches can be used for the dose response model fitting step: Generalized least 
squares fitting the estimates muH and covH or mixed-effects modeling (linear and nonlinear) 
incorporating a parametric dose response model for the progression slope μ(d). Both methods 
give very similar results; see Pinheiro et al. (2013). Here, we focus on generalized least 
squares fitting, which is implemented in the fitMod function in DoseFinding. We 
illustrate it in the call below for the Emax model, which is also the one with minimum AIC 
value.  
> fitMod(doses, muH, S=covH, model="emax", type = "general") 

Dose Response Model 

 

Model: emax  

Fit-type: general  

 

Coefficients dose response model 

     e0    eMax    ed50  

-5.1808  2.1802  1.1873  

A graphical description of the model fit, with the ANOVA estimates overlaid, can be found in 
Figure 3-6. 
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Figure 3-6 Fitted Emax model with pointwise 95% confidence intervals and 
ANOVA estimates (black dots) from the linear mixed effects models 
with pointwise 95% confidence intervals. 

 

Estimates for the target dose, that is, the smallest dose producing an effect greater than or 
equal to the target value of 1.4, can be obtained via the TD function 

In this example model selection was used to determine one dose response model to determine 
the dose response curve and the target dose. As mentioned earlier, model-averaging is an 
alternative approach if multiple models fit the data similarly well, we do not discuss it further 
here. 

3.2 Results  
In this section we provide evidence for the usefulness of the MCP-Mod approach described in 
Section 3.1. More specifically, we provide in Section 3.2.1 a list of medical papers that refer 
to MCP-Mod. In Section 3.2.2 we summarize the experiences at Novartis with the MCP-Mod 
procedure. We provide a list of Novartis studies that employed MCP-Mod and describe one 
study in detail, illustrating the use of MCP-Mod in practice and how it impacted the further 
development program. Finally, we summarize in Section 3.2.2 several numerical simulation 
studies that have been performed by the authors of this request as well as part of cross-
industry initiatives to improve dose finding in clinical drug development. 
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3.2.1 List of medical papers  
In the following, we provide a compiled list of references from the applied literature that used 
the MCP-Mod approach in their studies, as further evidence of its broad application.  

• Calhoun, D. A. et al. (2011) Effects of a Novel Aldosterone Synthase Inhibitor for 
Treatment of Primary HypertensionClinical Perspective Results of a Randomized, 
Double-Blind, Placebo-and Active-Controlled Phase 2 Trial. Circulation 124.18: 
1945-1955. 

• Christiansen, S. et al. (2012). Mixtures of endocrine disrupting contaminants modelled 
on human high end exposures: an exploratory study in rats. International Journal of 
Andrology, 35, 303–316. 

• Hass U. et al. (2007).  Combined exposure to anti-androgens exacerbates disruption of 
sexual differentiation in the rat. Environmental Health Perspectives, 115(suppl 1):122–
128.  

• Rosenstock K. J. et al. (2010). The 11-hydroxysteroid dehydrogenase type 1 inhibitor 
INCB13739 improves hyperglycemia in patients with Type-2 diabetes inadequately 
controlled by metformin monotherapy. Diabetes Care33:1516–1522, 2010. 

• Ruilope L. M. et al. (2010). Blood-pressure reduction with LCZ696, a novel dual-
acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-
blind, placebo-controlled, active comparator study. Lancet, 375, 1255-1266. 

• Selmaj, K. et al. (2011, October). BAF312, a Selective Sphingosine 1-Phosphate 
Receptor Modulator, Effectively Suppresses MRI Lesion Activity in Relapsing-
Remitting Multiple Sclerosis: Findings of an Adaptive Dose-Ranging Phase 2 Study. 
In Poster presented at the 5th Joint Triennial Congress of the European and Americas 
Committees for Treatment and Research in Multiple Sclerosis (Vol. 19, p. 22). 

• Scholze M. and Kortenkamp A. (2007) Statistical Power Considerations Show the 
Endocrine Disruptor Low-Dose Issue in a New Light. Environ Health Perspect. 2007 
December; 115(S-1): 84–90.  

• So A. et al. (2010).  Canakinumab for the Treatment of Acute Flares in Difficult-to-
Treat Gouty Arthritis: Results of a Multicenter, Phase II, Dose-Ranging Study. 
Arthritis & Rheumatism, 62, 3064–3076. 

• Verkindre C. et al. (2010) Sustained 24-h efficacy of NVA237, a once-daily long-
acting muscarinic antagonist, in COPD patients. Respiratory Medicine Volume 104, 
Issue 10, October 2010, 1482–1489 

• Villa, G. et al. (2011). Efficacy, safety, and tolerability of aliskiren monotherapy 
administered with a light meal in elderly hypertensive patients: a randomized, double-
blind, placebo-controlled, dose-response evaluation study. The Journal of Clinical 
Pharmacology 52, 1901-1911  
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3.2.2 Experiences at Novartis 
In this section we give an overview of several Novartis studies that employed MCP-Mod. We 
also describe one study in detail to illustrate the use of MCP-Mod in practice and how it 
impacted the further development program. 

3.2.2.1 List of Novartis studies 
In this section we provide a non-exhaustive overview of studies at Novartis, in which the 
MCP-Mod (or a conceptually closely related) statistical methodology has been used as a pre-
specified methodology (in most cases as the primary analysis method, in a few cases as 
secondary or exploratory  analysis for specific reasons). The list includes studies that are 
either completed or ongoing. Studies that are currently at the planning stage or where first 
patient first visit has not been achieved yet are not included. 

 
Study ID Phase Condition studied Treatment groups 

ACZ885H2255 Phase IIb Gout 5 doses, AC 

ACZ885I2202 Phase IIb Diabetes PBO, 4 doses 

ACZ885M2301 Phase III Prevention of cardiovascular events PBO, 3 doses 

ACZ885M2301S1 Phase III Prevention of cardiovascular events PBO, 3 doses 

ACZ885M2301S2 Phase III Prevention of cardiovascular events PBO, 3 doses 

AEB071C2201 Phase IIb Psoriasis PBO, 3 od and 4 bid doses 

BAF312A2201 Phase IIb Multiple Sclerosis PBO, 5 doses 

BGG492A2207 Phase IIa/b Epilepsy PBO, 2 doses 

LCI699A2201 Phase II Hypertension PBO, 3 od doses, 1 bid dose 

LCQ908A2203 Phase IIb Diabetes PBO, 5 doses, AC 

LCQ908B2302 Phase III Familial Chylomicronemia Syndrome PBO, 2 doses 

LCQ908C2201 Phase II Hypertriglyceridemia PBO, 3 doses, 2 AC 

LCZ696A2201 Phase IIb Hypertension PBO, 3 doses, 3 AC 

LIK066A2202 Phase IIb Diabetes PBO, 7 doses 

NVA237A2205 Phase IIb COPD PBO, 4 od doses, AC 

NVA237A2208 Phase IIb COPD PBO, 3 bid doses, 4 od doses 

QAW039A2206 Phase IIb Asthma PBO, 9 od doses, 4 bid doses, AC 

QMF149B2201 Phase II COPD PBO, 4 doses 

SAF312A2103 Phase IIa Dental pain PBO, 6 doses, AC 

XBD179A2204 Phase II Generalized anxiety disorder PBO, 4 doses 

Table 3-1 List of 20 example studies at Novartis which used MCP-Mod. PBO = 
Placebo; AC = Active Control 

In Table 3-1 we list 20 examples studies in tabular form. In the individual paragraphs below 
we provide further details on the clinical background and how MCP-Mod was applied. Note 
that due to the broad applicability of the MCP-Mod approach, this list illustrates how MCP-

https://collab.eu.novartis.net/ph/IISFuncExcelNw/Biostat/default.aspx?RootFolder=%2fph%2fIISFuncExcelNw%2fBiostat%2fShared%20Documents%2fStatistical%20Methodology%2fInnovation%20Projects%2fDose%20Finding%2fCase%20Studies%2fAEB071C2201&FolderCTID=0x012000C454C509750305498CF2F53326877E31&View=%7b3D084216%2dB100%2d41F7%2dAAA5%2dA49F233AD901%7d
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Mod can be tailored to the specific trial needs at hand. For example, in some cases the number 
of dose levels does not allow for dose response modeling (e.g. with 2 doses), in which case 
only the MCP part was used to test for a dose response signal. In other cases, testing for a 
dose response signal was not of major interest and interest focused on the Mod part only. The 
overarching principle of all of these examples is that multiple dose response models / shapes 
were pre-specified and either a test acknowledging for model uncertainty was used or model 
selection / model averaging was employed for dose response estimation. It also transpires 
from Table 3-1 that there is no limitation of using MCP-Mod in a specific indication or 
therapeutic area. 

 

ACZ885H2255 
Title: An adaptive dose-ranging, multi-center, single-blind, double-dummy, active-
controlled trial to determine the target dose of canakinumab (ACZ885) in the 
treatment of acute flares in gout patients who are refractory or contraindicated to 
NSAIDs and/or colchicine.  

Use of MCP-Mod: MCP-Mod used as primary analysis method to estimate the dose 
response relationship and to estimate the dose that has an efficacy comparable to 
active comparator. 

ACZ885I2202 
Title: Dose Finding, Safety and Efficacy of Monthly Subcutaneous Canakinumab 
Administration for the Treatment of Hyperglycemia in Metformin Monotherapy 
Treated Type 2 Diabetic Patients: a Randomized, Double-Blind, Placebo-Controlled, 
Multi-Center Study 

Use of MCP-Mod: Planned to be used at interim to assess a dose response trend and 
choose a dose for final stage. The trial stopped at interim. 

ACZ885M2301 
Title: A randomized, double-blind, placebo-controlled, event-driven trial of quarterly 
subcutaneous canakinumab in the prevention of recurrent cardiovascular events among 
stable postmyocardial infarction patients with elevated hsCRP 

Use of MCP-Mod: MCP-Mod used for exploratory assessment of the dose response 
curve for efficacy and safety outcomes. 

ACZ885M2301S1 
Title: A randomized, double-blind, placebo-controlled, event-driven trial of quarterly 
subcutaneous canakinumab in the prevention of recurrent cardiovascular events among 
stable post-myocardial infarction patients with elevated hsCRP: An imaging sub-study 
evaluating the effect of canakinumab on carotid atherosclerosis. 

Use of MCP-Mod: This is a sub-study of ACZ885M2301. MCP-Mod is used to test 
for a dose response trend and to estimate the dose response relationship. 

ACZ885M2301S2 
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Title: A randomized, double-blind, placebo-controlled, event-driven trial of quarterly 
subcutaneous canakinumab in the prevention of recurrent cardiovascular events among 
stable post-myocardial infarction patients with elevated hsCRP: An OGTT sub-study 
evaluating the effect of canakinumab on insulin secretion rate and other glucose 
control parameters following an oral glucose tolerance test in Type 2 diabetics 

Use of MCP-Mod: This is a sub-study of ACZ885M2301. MCP-Mod is used to test 
for a dose response trend and to estimate the dose response relationship.  

AEB071C2201 
Title: A double blind, randomized, placebo controlled, multicenter, dose finding study 
of oral AEB071 assessing Psoriasis Area and Severity Index (PASI) response as a 
function of dose and treatment duration (primary outcome) in patients with plaque 
psoriasis. 

Use of MCP-Mod: Primary analysis method to test for a dose response trend (using 
likelihood ratio tests) and estimate the dose response relationship and the target dose. 
Modeling of once and twice daily data has been performed by using a regimen 
multiplier. 

BAF312A2201 
Title: A phase II, double-blind, randomized, multi-center, adaptive dose-ranging, 
placebo-controlled, parallel-group study evaluating safety, tolerability, and efficacy on 
MRI lesion parameters and determining the dose response curve of BAF312 given 
orally once daily in patients with relapsing-remitting multiple sclerosis 

Use of MCP-Mod: Two-stage dose-finding study. MCP-Mod used as primary analysis 
method to test for a dose response trend and estimate the dose response relationship. 
At interim the contrast test statistics were used to select the studied doses for the 
second part of the trial. 

BGG492A2207 
Title: A 12-week, multi-center, randomized, double-blind, placebo-controlled efficacy 
and safety study examining seizure frequency of BGG492 capsules administered 
orally three times daily (TID) as adjunctive treatment in patients with partial onset 
seizures. 

Use of MCP-Mod: Primary analysis method to test for a dose response trend. No dose 
response modeling performed in this study as only two active doses were used. 

LCI699A2201 
Title: A multi-center, randomized, double-blind, placebo and active controlled, 
parallel group, dose finding study to evaluate the efficacy and safety of LCI699 
compared to placebo after 8 weeks treatment in patients with essential hypertension 

Use of MCP-Mod: Primary analysis for dose response analysis for od doses. For active 
comparator and the bid dose ANCOVA was used. 

LCQ908A2203 
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Title: A 12-week multi-center, randomized, double-blind, placebo-controlled, parallel-
group adaptive design study to evaluate the efficacy on blood glucose control and 
safety of five doses of LCQ908 (2, 5, 10, 15 and 20 mg) or sitagliptin 100 mg on a 
background therapy of metformin in obese patients with type 2 diabetes 

Use of MCP-Mod:.Primary analysis method for testing for a dose response trend and 
estimating the dose response curve. 

LCQ908B2302 
Title: A randomized, double-blind, placebo controlled study to assess efficacy, safety 
and tolerability of LCQ908 in subjects with Familial Chylomicronemia Syndrome. 

Use of MCP-Mod: MCP part of MCP-Mod used as primary analysis method to detect 
a dose response trend. This was a study in an orphan indication. 

 

LCQ908C2201 
Title: A multicenter, randomized, active comparator, placebo-controlled, double-blind 
pilot study to assess the efficacy and safety of LCQ908 alone and in combination with 
fenfibrate or Lovaza® in patients with severe hypertriglyceridemia 

Use of MCP-Mod: Primary analysis method for dose response test and estimation of 
the dose response profile. 

LCZ696A2201 
Title: A multi-center, randomized, double-blind, placebo and active controlled, 
parallel group, dose range study to evaluate the efficacy and safety of LCZ696 
comparatively to valsartan, and to evaluate AHU377 to placebo after 8 week treatment 
in patients with essential hypertension 

Use of MCP-Mod: Planned as a secondary efficacy analysis 

LIK066A2202 
Title: A multi-center, randomized, double-blind, double-dummy, parallel group dose-
finding study to evaluate the change in HbA1c after 12 weeks monotherapy with seven 
doses of LIK066 compared with placebo in patients with type 2 diabetes 

Use of MCP-Mod: Primary analysis method to test for a dose response trend, estimate 
the dose response relationship and target doses of interest. 

NVA237A2205 
Title: A randomized, double-blind, placebo-controlled, 4 period incomplete block 
cross-over, multi-center, multiple dose (7 days) dose-ranging study to assess the 
efficacy and safety of 4 doses of NVA237 in patients with stable COPD, compared to 
seven days treatment with tiotropium (18μg once daily, open label) as an active 
control. 

Use of MCP-Mod: Pre-specified as a supportive analysis. 

NVA237A2208 
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Title: A randomized, double-blind, placebo-controlled, 2-period, cross-over study to 
assess the efficacy and safety of differing doses of NVA237 administered either once 
daily or twice daily, in patients with moderate to severe chronic obstructive pulmonary 
disease (COPD). 

Use of MCP-Mod: Used as primary analysis method, but only modeling part was used 
in this study. Longitudinal dose response modeling has been used together with model 
averaging. 

QAW039A2206 
Title: A randomized, placebo-controlled, dose-ranging, multi-centre trial of QAW039 
(1-450mg p.o.), to investigate the effect on FEV1 and ACQ in patients with moderate-
to-severe, persistent, allergic asthma, inadequately controlled with ICS therapy 

Use of MCP-Mod: Primary analysis method used to assess a dose response effect and 
estimate the dose response relationship. Modeling of once and twice daily data has 
been performed by using a regimen multiplier. 

QMF149B2201 
Title: A randomized, multi-center, parallel group, double blind, placebo and 
formoterol controlled 14 day dose ranging trial of 4 doses of indacaterol delivered via 
Twisthaler® in patients with COPD 

Use of MCP-Mod: Primary analysis method used to assess a dose response effect, 
estimate the dose response relationship and estimate the target dose. 

SAF312A2103 
Title: A double-blind, randomized, single dose, placebo-controlled, three part study to 
evaluate the safety and tolerability of SAF312 in postoperative dental pain patients 
(Part A), to evaluate the analgesic effect of SAF312 in comparison to placebo in the 
treatment of postoperative dental pain using ibuprofen as a positive control (Part B) 
and to evaluate a dose response (Part C) 

Use of MCP-Mod: Primary analysis method to estimate the dose response relationship. 
The design was adapted at the interim analysis between Part B and Part C based on the 
currently fitted dose response curve and the corresponding optimal design. 

XBD173A2204 
Title: A randomized, double-blind, placebo-controlled, parallel-group study of the 
efficacy, safety and tolerability of XBD173 in patients with generalized anxiety 
disorder (GAD). 

Use of MCP-Mod: Primary analysis method to assess a dose response trend and 
estimate the dose response relationship. 

3.2.2.2 Case Study: NVA237A2205 study 
Chronic Obstructive Pulmonary Disease (COPD) is a disease of the lungs characterized by 
airflow limitation which is not fully reversible. The investigational drug NVA237 is a dry 
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powder formulation of the muscarinic receptor antagonist glycopyrronium bromide being 
developed by Novartis. 

The primary purpose of the A2205 study was to provide data about the risk-benefit of four 
doses of NVA237 (12.5, 25, 50 and 100μg o.d.) and open-label tiotropium (18μg) so that an 
optimal dose of NVA237 can be chosen for Phase III studies. The primary endpoint of the 
study was to evaluate the bronchodilatory efficacy of NVA237 in patients with stable COPD 
in terms of trough forced expiratory volume over 1 second (FEV1) (mean of 23h 15min and 
23h 45min post dose) in Liter (L) following 7 days of treatment. 

Facilitated by the relatively quick read-out and to reduce the impact of inter-patient variability, 
which is known to be large for this endpoint, a crossover design was used. The relatively large 
number of treatments (6) and the required wash-out period (7 days) between treatments made 
a complete crossover unfeasible and a balanced incomplete block crossover design was used, 
in which each patient received 4 of the 6 treatments. The treatment sequences, in blocks of 
size 30, were determined prior to randomizing patients, so as to ensure balance in the order 
and combinations of treatments measured in the same patient. In this study, the pre-planned 
primary analysis was an analysis-of-covariance (ANCOVA). The sample size was thus 
determined to achieve a specified power for the ANCOVA pairwise tests, using a 
conservative Bonferroni correction to adjust for multiplicity. MCP-Mod was specified for the 
supportive analysis, but ultimately played a key role in the final discussions on which dose to 
take forward into Phase III.  

Patients were accounted for as fixed effects in the dose response model, together with 
treatment sequence, period and baseline FEV1. We now consider each of the five MCP-Mod 
steps described in Figure 3-1 for this particular trial; see also Bretz et al. (2009) for more 
details on this analysis. 

 

Step 1: Set of candidate models 
After discussions with the clinical team, five candidate models were selected to represent the 
anticipated dose response shapes for the improvement in FEV1 change from baseline over 
placebo: Emax (2 shapes with ED50 = 2.65 and ED50 = 12.5, respectively), linear, logistic 
(with ED50 = 29 and δ = 9.55), and quadratic (with δ = -0.0075). The candidate model shapes 
were elicited through discussions with the clinical team and utilizing results from previous 
studies on the same compound and other drugs for the same indication. It was anticipated that 
the maximum treatment effect would be a 0.15 L improvement over placebo. The resulting 
candidate models are illustrated in Figure 3-5. 
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Figure 3-5 Candidate models specified before trial start. 

 
Step 2: Optimal model contrasts 
Because of the presence of covariates, the covariance matrix of the treatment effect estimates 
depends on covariates through the design matrix and hence the general formula given in 
Section 3.1.2.2 needs to be used to determine the optimal contrasts. The design matrix used in 
this step was obtained prior to the start of trial, depending only on the subset of covariates 
known at that stage, namely: patient, period, and dose. 

 
Step 3: Testing for dose response signal 
From this step onward, the real data observed in the trial is used to illustrate the methods and 
derive results. Applying the optimal contrasts to the treatment estimates, one obtains that all 
contrasts had test statistics > 6 and multiplicity adjusted p-values < 0.0001. As a result, the 
significance of the dose response signal was established and all models were considered in the 
next step.  

 
Step 4: Model selection 
The AIC criterion was used to select the best model. Note that, even though there are two 
Emax shapes in the candidate set, only one Emax fit is obtained. Based on the AIC results, the 
Emax model was chosen to represent the dose response profile. The estimated improvement 
over placebo estimated from the fitted Emax model was 1.69d/(18 + d). 
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Step 5: Dose estimation 
Based on the fitted Emax of Step 4, the smallest dose giving the clinically relevant 
improvement over placebo of 0.12 L is estimated to be 44 µg. This is the MED estimate 
produced by MCP-Mod in this study. The precision of the MED estimate was evaluated via a 
bootstrap approach: The 90% confidence interval for the MED, corresponding to the 5% and 
95% quantiles of the bootstrap sample, was [18, 81], reflecting the uncertainty in the estimate. 
Figure 3-6 displays the fitted model and corresponding confidence intervals. 

 

 

Figure 3-6 Fitted Emax model with pointwise 95% confidence intervals for the 
NVA237A2205 study data and ANCOVA estimates (black dots). The 
red dashed line is the clinical relevance threshold of 0.12 L. 

 
Although MCP-Mod was not pre-specified as primary analysis method in this study, it 
provided answers to both key questions that the clinical team wanted to address: establishing a 
dose response signal and selecting a dose for the confirmatory phase. The former was 
unequivocally shown by the large test statistics for the model contrasts, while the latter was 
provided by modeling the dose response profile. Relying on the original primary analysis 
methods based on ANCOVA pairwise comparisons, the quantitative basis for the decisive 
discussions would have been considerably weaker. 

The results of this analysis combined with additional clinical considerations finally suggested 
the use of the 50 μg once daily dose in the main pivotal studies A2303 and A2304, which led 
to a positive outcome. The drug was granted market authorization with the 50 μg o.d. dose in 
Europe in 2012; see EMA document EMA/CHMP/508029/2012.  
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3.2.3 Simulation studies 
To allow a direct quantitative assessment of the MCP-Mod approach, we describe in this 
Section two comprehensive simulation studies, each motivated by a real dose-ranging 
applications and covering a wide range of practical scenarios. First, we summarize the 
simulation results from Branson et al. (2003), who primarily compared the MCP-Mod 
approach with competing trend tests. Second, we review the simulation work performed by 
the PhRMA ADRS working group, which investigated several innovative approaches 
(including MCP-Mod and a response-adaptive version) in two extensive simulation studies 
aimed at quantifying the benefits of ADR methods over traditional, fixed design approaches 
(Bornkamp et al. 2007; Dragalin et al. 2010). For each simulation study, we describe its 
design, including its assumptions and scenarios; the performance metrics used to evaluate 
different statistical operational characteristics of each method; and a graphical summary of the 
statistical performance of the methods, based on the simulation results. 

3.2.3.1 Simulation study by Branson et al. (2003) 
In this section we investigate, via simulation, the performance of the MCP-Mod dose finding 
approach with respect to two main aspects: 

• its power to detect the existence of a dose response signal, and 

• its ability to, at the end, choose a dose close to the desired level (taking into account 
both statistical significance and clinical relevance), the dose selection performance. 

Other classical dose finding methods based on multiple testing procedures were also used in 
the simulations for comparison with the MCP-Mod approach, with regard to the dose response 
signal detection performance. Because model-based dose selection methods can choose any 
value on a continuous scale, they are not directly comparable to classical dose finding 
methods based on multiple comparisons alone, which can only select the dose from within the 
set of levels under investigation. Therefore, the dose-selection performance is only 
investigated for the MCP-Mod approach. 

Design 
The study design used for the simulations was based on the following assessments, matching 
the requirements of the original MCP-Mod procedure described in Section 3.1: 

• dose levels: d = 0, 0.05, 0.2, 0.6 and 1 

• five parallel groups, with a single endpoint measured per patient 

• assumptions on endpoint values at dose d: independently distributed as N(μ(d); σ2) 

• balanced sample size allocation with n patients per dose group and no drop-outs 

• group sample sizes: n = 10, 25, 50, 75, 100 and 150 

• one-sided significance level α = 0.05 
Table 3-2 lists the dose response models included in the simulation study. All of these shapes 
have the property that at d = 0 the response value is about 0.2 and, with the exception of the 
constant shape, all have a maximum response of about 0.8 within the interval [0, 1] (that is, a 
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maximum dose effect of about 0.6). Figure 3-7 displays the dose response profiles for the nine 
shapes listed in Table 3-2. A total of 10,000 simulated trials were generated for each 
combination of shape and sample size. 

The constant shape is included to evaluate the performance of the MCP-Mod method in terms 
of preserving the nominal Type I error rate for dose response signal detection. Shapes 2 
through 7 form the set of candidate models for the contrast tests. The last two shapes, 8 and 9, 
are included to evaluate the performance of the MCP-Mod approach under model 
misspecification: They do not quite correspond to any of the model shapes in the candidate set, 
though can be approximated by some of the models in there. 

 
Model μ(d) 

constant 0.2 

Emax 0.2 + 0.7d/(0.2 + d) 

linear in log-dose 0.2 + 0.6 log(5d + 1)/log(6) 

Linear 0.2 + 0.6d 

exponential 0.2exp[log(4)d] 

quadratic  0.2 + 2.0485d – 1.7485d2 

logistic 0.193 + 0.607/{1 + exp[10log(3)(0.4 – d)]} 

double-logistic {0.198 + 0.61/(1 + exp[18(0.3 – d)])} I(d ≤ 0.5) + {0.499 + 0.309/(1 + exp[18(d – 0.7)])} I(d > 0.5) 

convex 0.2 + 0.6/{1 + exp[10(0.8 – d)]} 
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Table 3-2 Dose response models included in the simulation study 

 

Figure 3-7 Visualization of the dose response models included in the simulation 
study. Open dots indicate the responses at the selected dose levels. 

 
Dose response signal detection performance 
For the purpose of evaluating the dose response signal detection performance of the MCP-
Mod method, the response standard deviation was set at σ = 1.478, which, for a sample size of 
n = 75 patients per arm, gives a power of 80% for the pairwise test between two doses at the 
maximum effect of δ = 0.6. Table 3-3 gives the simulated probabilities of establishing a dose 
response signal for the different methods under the various combinations of shapes and 
sample sizes. We included the likelihood ratio test (LRT; Bartholomew, 1961) and the step 
contrasts (Bauer and Hackl, 1985; Ruberg, 1989) as competitors to the MCP-Mod approach. 
The LRT is known to be one of the most powerful tests for trend throughout the order 
restricted alternative region μ1 ≤ … ≤ μk. In contrast to MCP-Mod, the LRT is designed to 
test only for a dose response trend and thus does not give any information about the 
underlying dose response shape. The step contrasts are a powerful alternative to the LRT. The 
step contrasts are particularly powerful for finding the change point in a series of treatment 
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means (Bauer and Hackl, 1985). For our simulations we used the multivariate t-distribution to 
compute the critical values. 

 
  Data generating shape 

Method n Const Emax Lin-log Linear Exp Quad Logistic D.logist Convex 

MCP-Mod 10 0.046 0.248 0.261 0.245 0.241 0.219 0.317 0.223 0.182 

 25 0.049 0.47 0.491 0.484 0.461 0.389 0.599 0.411 0.337 

 50 0.048 0.72 0.752 0.734 0.712 0.642 0.856 0.66 0.554 

 75 0.051 0.868 0.891 0.88 0.862 0.799 0.96 0.805 0.728 

 100 0.049 0.944 0.952 0.949 0.942 0.896 0.989 0.901 0.848 

 150 0.052 0.989 0.992 0.992 0.988 0.972 0.999 0.976 0.952 

LRT 10 0.048 0.242 0.253 0.246 0.245 0.18 0.283 0.181 0.196 

 25 0.052 0.46 0.475 0.468 0.464 0.311 0.555 0.328 0.359 

 50 0.051 0.713 0.731 0.718 0.706 0.523 0.823 0.556 0.591 

 75 0.052 0.857 0.874 0.865 0.858 0.684 0.946 0.721 0.761 

 100 0.048 0.937 0.943 0.941 0.935 0.806 0.982 0.838 0.869 

 150 0.049 0.987 0.99 0.989 0.987 0.925 0.999 0.947 0.965 

step 10 0.048 0.229 0.24 0.229 0.234 0.177 0.272 0.179 0.19 

 25 0.051 0.44 0.452 0.447 0.444 0.312 0.539 0.329 0.354 

 50 0.053 0.69 0.711 0.697 0.687 0.52 0.818 0.559 0.58 

 75 0.055 0.841 0.858 0.85 0.844 0.682 0.944 0.726 0.753 

 100 0.048 0.926 0.933 0.933 0.927 0.804 0.981 0.839 0.865 

 150 0.049 0.984 0.988 0.987 0.983 0.923 0.999 0.95 0.962 

Table 3-3 Dose response signal detection probabilities for different trend tests, 
under the shape and sample size combinations 

 

The Type I error rate is well controlled at its nominal level of 5% for all sample sizes. The 
logistic shape has the highest power and the convex shape the smallest. The power values for 
the other shapes are of comparable magnitude. In particular, it is seen that MCP-Mod behaves 
very similar in power compared with the LRT. The LRT is slightly better for the convex 
shape. This is because we did not include the convex shape as a model in the candidate set for 
MCP-Mod. Had such model been included in the candidate set, the advantage of the LRT 
would likely vanish. Instead, MCP-Mod seems to be slightly more powerful for the linear-log, 
linear and logistic shapes. MCP-Mod is considerably more powerful than the LRT for the 
quadratic and the double-logistic shapes, since the LRT is not designed for such downturns at 
higher doses. Both the MCP-Mod and the LRT are more powerful than the step contrasts. 

Dose selection performance 
For the purpose of evaluating the dose selection performance of the MCP-Mod approach, we 
use a smaller, more realistic response standard deviation of at σ = 0.65 (Branson et al., 2003). 
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The clinically relevant effect was set at Δ = 0.4, i.e. we focus on estimating the smallest dose 
that achieves a target difference of 0.4 on top of the placebo response.  

We omit reporting the simulation power values under the different shape scenarios for the 
new σ. As expected, the power values are considerably larger than in Table 3-3, because of 
the 56% reduction in σ. The Type I error rate is well controlled at the nominal 5% level and 
by n = 50 all shapes result in almost certain dose response signal detection. 

The dose response signal detection results also provide information about the ability of the 
contrast tests in the MCP-Mod approach to discriminate between the models in the candidate 
set. Table 3-4 gives the simulation probabilities of choosing the correct model for the six 
models in the candidate set (e.g., the probability of the Emax model contrast yielding the 
largest contrast test statistic when in fact this is the correct model). The quadratic model has 
the best discrimination power, since its associated contrast is the least correlated with the 
remaining model contrasts. The linear-log and linear model are the hardest to identify, which 
again can be explained through their high correlation. Because models which can represent 
similar dose-response profiles will likely lead to similar dose selections in the second stage of 
the method, the discrimination among highly correlated models is less critical than among the 
less correlated ones. This issue will be further explored below.  
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n Emax Lin-log Linear Exp Quad Logistic 

10 0.28 0.09 0.08 0.38 0.45 0.41 

25 0.5 0.22 0.18 0.59 0.79 0.63 

50 0.66 0.34 0.31 0.67 0.91 0.75 

75 0.73 0.44 0.38 0.71 0.96 0.83 

100 0.77 0.54 0.47 0.75 0.98 0.87 

150 0.84 0.65 0.59 0.79 0.99 0.93 

Table 3-4 Probability of correctly identifying the response model, for the six 
models in the candidate set and the different sample sizes for σ = 0.65 

Table 3-5 gives the target doses to achieve the desired clinically relevant effect of 0.4 
(difference with respect to placebo) for the eight different shapes considered for dose selection. 
Due to the large number of shape and sample size combinations, we only present the dose 
selection simulation results for a subset of the scenarios investigated. We estimate the target 
doses using three different methods A, B, and C, using the upper confidence bound, the mean 
estimate or the lower confidence bound, respectively; see the definition of MED1, MED2, and 
MED3 in Figure 3-8. 

 
Shape Emax Lin-log Linear Exp Quad Logistic D.logist Convex 

Target dose 0.27 0.46 0.67 0.79 0.25 0.46 0.34 0.87 

Table 3-5 Target doses for clinically relevant effect of 0.4 under various 
simulations shapes 
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Figure 3-8 Three different methods for target dose estimation 

Figures 3-9 and 3-10 include the boxplots of the selected doses in 10,000 simulated trials 
using three methods A, B, and C to estimate the target dose for all shapes and n = 25 and 75, 
using pointwise 80% confidence intervals. It is clear from the figures that method A tends to 
underestimate the target dose, method C tends to overestimate it, and method B estimates the 
target dose more consistently. The precision of the methods is considerably enhanced when 
the sample size increases from 25 to 75. It should be noted, though, that a more suitable 
choice of doses with modeling in mind would yield considerably better results, for the same 
overall sample sizes. This issue was considered extensively by the PhRMA ADRS working 
group, whose simulation results (including the MCP-Mod approach) are considered in the 
next subsection. 

We conclude this section with the remark that the precision of the dose selection algorithms 
vary considerably with the underlying dose response shape. The quadratic, convex and 
exponential shapes tend to lead to greater precision (for the particular scenarios used here, but 
not in general), while the remaining shapes give similar dispersions for the dose estimates 
(except for the linear-log shape, which gave higher dispersion than the others). 
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Figure 3-9 Boxplots of selected doses for n = 25 
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Figure 3-10 Boxplots of selected doses for n = 75 

 

3.2.3.2 PhRMA ADRS working group simulations 
The simulation results in this section are taken from the white paper of the PhRMA working 
group on “Adaptive Dose-Ranging Studies” (Bornkamp et al. 2007). The main objective of 
this group was to evaluate different novel and existing non-adaptive and adaptive dose-
ranging methods in a comprehensive simulation study. A variant of MCP-Mod was one of the 
evaluated methodologies and a subset of the performed simulations is presented here. The 
advantage of these simulations is that they allow comparing MCP-Mod to alternative 
methodologies. 

For conciseness and comparability, the comparison is limited here to methods that were fixed-
design methods since MCP-Mod was employed in a fixed design setting in these simulations; 
see Dragalin et al. (2010) for a comparison of an adaptive version of MCP-Mod to other 
adaptive approaches. In addition, we removed one additional method that was conceptually 
very similar to MCP-Mod. The remaining comparators then include a Bayesian, a 
nonparametric and an ANOVA approach, the latter being a benchmark for the alternative 
methods.  

Compared methodologies 
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Below we give descriptions of the competing methodologies and how they were applied in the 
simulation study. MCP-Mod was employed here with model-selection (instead of model-
averaging) based on the maximum contrast test statistics. 

ANOVA approach. The particular ANOVA approach used in the simulation study consists of 
an initial one-sided Dunnett multiple comparison procedure to test each of the active doses 
against placebo. If at least one of the doses is statistically significant (under Dunnett’s 
multiplicity adjustment), dose-response is established. The target dose is then estimated as the 
smallest statistically significant dose which has an average effect that is clinically relevant 
(according to a pre-specified value of clinical relevance), provided at least one dose meet both 
criteria. If a target dose can be estimated, the final step of the approach consists in estimating 
a dose-response model. Three candidate dose-response models (linear, quadratic, and logistic) 
are fitted to the data and the Akaike Information Criterion is used to select the best model, 
which is then used for predictions, etc. 

Bayesian model-averaging approach (BMA). Bayesian model averaging is a strategy 
intermediate between parametric modeling and nonparametric modeling that tries to avoid the 
dangers of under- or over-fitting. As a basis here a set of relatively simple dose-response 
models is used. Then, starting from prior model probabilities (“weights”), as well as prior 
distributions on the model-specific parameters, standard Bayesian inference leads to posterior 
updates of the unknown quantities (model weights and model parameters). The approach is 
well-suited for situations where the quantity of interest is model-independent, such as in dose-
ranging studies where the objective is to find a dose fulfilling a certain pre-specified criterion. 
Bayesian model averaging generalizes model selection strategies and has the advantage of 
weighting the candidate models in an appropriate (data-dependent) way. A simple informal 
Bayesian model averaging approach based on a set of normal linear models allowing for 
analytic posterior updates was used. Here this choice was mainly dictated by the fact that 
MCMC-based posterior inferences for non-conjugate models would have made simulations 
computationally infeasible. The approach is informal in that it only uses posterior summaries 
as a basis for dose selections. 

Nonparametric dose-response modeling approach (LOCFIT). This method relies on model-
free testing techniques to assess a possible dose-response effect. Non-parametric regression 
techniques are used for target dose estimation as they can model virtually any smooth dose-
response shape without the need to pre-specify a parametric dose-response model. The dose-
response effect is assessed using a multiple contrast test. To cover a broad range of potential 
dose response shapes, the method relies on five contrast tests capturing the concave, convex, 
sigmoid, linear, and umbrella model shapes (see Stewart and Ruberg, 2000 for more 
information on multiple contrast tests). For the dose estimation step we utilized local 
quadratic regression techniques (Hastie and Loader, 1993) using a Gaussian kernel and a 
global bandwidth. The bandwidth was selected by minimizing the generalized cross-
validation score. The locfit package in R was used for the implementation of the procedure. 

Design of simulation study 
In total, 3 x 6 x 2 = 36 different scenarios were used in the simulations, corresponding to 
different combinations of dose designs (3), dose-response profiles (6), and total sample size 
(2). To give practical motivation, a neuropathic pain dose-ranging study was used to provide 
context for the simulation study. The primary endpoint is the change from baseline in a visual 
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analog scale (VAS) at 6 weeks and the response is assumed to be normally distributed with 
variance 4.5. Negative values give indication of efficacy in reducing the neuropathic pain. The 
clinically relevant effect is set to etarg = −1.3 units (i.e., an average reduction of at least 1.3 
units from baseline). 

It is assumed that up to nine equally spaced doses can be utilized in the trial: 0, 1, …, 8. Three 
different dose designs are considered in the simulations, to investigate the impact of number 
and spacing of doses on the performance of the methods: 

• Five equally spaced doses: 0, 2, 4, 6, and 8. 

• Seven unequally spaced doses: 0, 2, 3, 4, 5, 6, 8. 

• All nine equally spaced doses: 0, 1, …, 8. 
Figure 3-11 displays a total of five different dose-response profiles that were used to simulate 
the primary endpoint, allowing the evaluation of the methods under a wide range of scenarios 
likely to be observed in clinical practice. A flat model was also included to evaluate the Type 
I error rate. In all models, the placebo effect was set to 0 points and, with the exception of the 
logistic model, the maximum effect within the observed dose range was set to -1.65 units. 

• Flat: µ(d) = 0 

• Linear: µ(d)  = -(1.65/8)d 

• Logistic: µ(d)  = 0.015 – 1.73/{1 + exp(1.2/(4 – d))} 

• Umbrella: µ(d)  = -(1.65/3)d + (1.65/36)d2 

• Emax: µ(d)  = -1.81 d/(0.79 + d) 
The response at dose d are assumed to be independently normally distributed with mean μ(d) 
and variance 4.5. 
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Figure 3-11 Dose-response profiles used in simulation 

Two maximum total sample sizes were used in the simulations: 150 and 250 patients. These 
values are consistent with sample sizes commonly used in neuropathic pain Phase II trials. 
The total sample size N corresponds to the sum of the number of patients assigned to each 
dose. For example, under equal treatment allocation and with N = 250, a 5-dose design 
assigns 50 patients to each dose and a 9-dose design, about 28. To adequately estimate the 
statistical operational characteristics of the various methods, a minimum of 5,000 simulated 
trials were used for each of the scenarios considered. For some of the less computationally 
intensive methods (MCP-Mod and ANOVA), 10,000 simulated trials per scenario were used. 

Measuring Performance of Methods 
To make the problem more concrete, for the purpose of the simulation study the following 
specific goals were identified: 

(A) Detecting dose response: evaluate if there is evidence of activity associated with the 
drug, represented by a change in clinical response resulting from a change in dose; 

(B) Identifying clinical relevance: if a significant trend is established, determine if a 
predefined clinically relevant response can be obtained within the observed dose 
range;  

(C) Selecting a target dose: when the previous goal is met, select the dose to be brought 
into the confirmatory phase, the so-called target dose; 

(D) Estimating the dose response: finally, estimate the dose-response profile within the 
observed dose range. 

Performance metrics to quantify each of these goals are described below. 
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(A) Detecting dose response. Each of the methods includes a decision rule to determine 
whether the data provides sufficient evidence of a dose response (DR) signal. The probability 
of identifying the presence of dose response, P(DR) estimated as the percentage of simulated 
trials in which the decision rule concluded for dose response signal is used as the summary 
metric for this objective. To allow adequate comparisons, a significance level of 5% was 
specified for all methods. 

(B) Identifying clinical relevance. It is, of course, possible to conclude that dose response is 
present, but, nevertheless, that none of the observed doses is capable of producing at least the 
clinically relevant effect. All methods implement decision rules for identifying clinical 
relevance within the dose range of the trial. The corresponding probability, Pr(dose), 
estimated as the percentage of simulated trials in which a significant trend was established and 
a dose with a clinically relevant effect was chosen, is used to summarize the performance of 
the methods with regard to this objective. By definition, Pr(dose) ≤ Pr(DR). 

(C) Selecting a target dose. In practice, the selection of the dose to bring into the confirmatory 
phase is based on a plurality of factors, including, but not restricted to, efficacy and safety 
outcomes in the Phase II trial(s). For the purpose of this simulation study the problem was 
simplified and only a target efficacy result (the clinically relevant effect) is used to determine 
the dose to be selected. In this context, the target dose dtarg is defined as the smallest dose 
which produces an effect greater than, or equal to, the clinically relevant target effect etarg. For 
the purpose of the simulation study the dose selection is restricted to the set {1, 2, …, 8}. 
Therefore, estimated target doses resulting from any of the model-based methods are rounded 
to the nearest integer within this set. Note that this may result in a dose not used in the trial 
being selected in the end as the target dose (e.g., d = 3 being chosen in the 5-dose design). 
Table 3-5 lists the values of dtarg.  

The distribution of estimated dtarg, from the simulated trials, provides a complete description 
of the performance of the estimate. The following statistics were used to summarize the dose 
estimation performance of the various methods, with expectations and probabilities referring 
to the corresponding Monte Carlo distributions obtained in the simulations. 

• Percentage bias:  
 

• Percentage absolute error: 
 

 

 (D) Estimating the dose response. To characterize the efficacy of the compound precisely 
proper estimation of the dose response profile is necessary. The average absolute prediction 
error (APE), calculated at the available doses (including placebo), is used as an overall 
measure of performance for dose response estimation. Letting μ(d) denote the expected dose 
response at dose d and (d)  its prediction based on the estimated dose-response model, we 
define APE = 1/9Σd E(| (d) – μ(d)|). To make the summary statistic non-dimensional and 
interpretable as a percentage, we consider the percent APE (pAPE), defined as the percent 
value of APE relative to the (absolute) target effect, that is pAPE = 100APE/etarg. 
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n Actual Rounded 

Linear 6.30 6 

Logistic 4.96 5 

Umbrella 3.24 3 

Emax 2.00 2 

Table 3-6 Target doses and target dose intervals for dose response models 
used in the simulation 

 
Simulation Results 
Below we present a comprehensive subset of the simulations; see Bornkamp (2007) for more 
extensive results. 

 

 

Figure 3-12 Type I error rate for detecting dose response under flat profile 

(A) Detecting dose response. As illustrated in Figure 3-12, all methods were capable of 
controlling the Type I error rate. Fluctuations around the 5% level are consistent with Monte 
Carlo error. The probabilities of detecting dose response under active profiles are included in 
Figure 3-13. For a total sample size of N = 250 patients, MCP-Mod and the other methods 
have reasonable power to detect dose response under the different dose response models. 
ANOVA presents the relatively worst performance compared to the remaining methods in 
particular for the case of 9 doses, because it adjusts for multiplicity for the individual dose-
comparisons. When the sample size is reduced to N = 150 patients, the differences among the 
methods become more pronounced. 
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Figure 3-13 Power to detect dose response under active DR profiles. 

(B) Identifying clinical relevance. Figure 3-14 shows the probabilities of incorrectly 
identifying a dose that produces a clinically relevant effect under a flat dose response model. 
ANOVA has the worst performance for this metric. This is due to the fact that no smoothing 
is done between the dose levels and random highs or random lows influence the dose-
estimation for the ANOVA approach. The performance deteriorates further with the increase 
in number of doses and reduction in sample size. The probabilities of correctly choosing a 
clinically relevant dose under active dose response profiles are presented in Figure 3-15. The 
performance of the methods varies considerably with the underlying dose response model, the 
total sample size, and the dose design. None of the methods clearly dominates the others and 
MCP-Mod is comparing quite favorably to the other methods. 
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Figure 3-14 Probabilities of identifying clinical relevant dose under flat dose 
response. 

 

 

Figure 3-15 Probabilities of identifying clinical relevant dose under active dose 
response. 

 

(C) Selecting a target dose. The plots of the relative bias and relative absolute error in the 
target dose estimates are displayed in Figures 3-16 and 3-17, respectively. Both plots indicate 
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the dependence of the precision of the dose estimate on the dose response profile: the Emax 
shape leads to considerably more biased and less precise dose estimates, for all methods 
considered here. Again no clear best method emerges and MCP-Mod is performing quite 
favorable compared to the other methods. 

 

Figure 3-16 Relative bias in target dose estimation. 

 

Figure 3-17 Relative absolute error in target dose estimation. 
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(D) Estimating the dose response. The plots of the average absolute prediction errors (pAPE) 
relative to the target effect, presented in Figure 3-18, suggest that there are no striking 
differences among the methods with regard to DR estimation. Also the ANOVA method 
performs quite acceptable here, which is due to the fact that dose-response modeling was 
performed for dose-response estimation (in a fashion similar as it would be done for MCP-
Mod). 

 

 

Figure 3-18 Average absolute prediction error relative to target effect. 

 

Overall, we conclude from the PhRMA simulations that MCP-Mod compares favorably in 
comparison to alternative innovative methods for dose-response signal detection and 
modeling. In addition, it outperformed the benchmark ANOVA approach in many cases. 

4 Conclusions 
Current dose finding practices often are not satisfactory: Many dose finding studies are not 
properly designed (too few doses, incorrect dose-range, sample sizes not large enough, etc.) 
and the inferences drawn from them not adequately accurate thus leading to major undesirable 
consequences in drug development (e.g., high failure rate in Phase III, need for label changes 
after approval, etc.). 
Here, we have described a unified strategy for analyzing dose finding studies, including the 
testing for a dose response signal and the selection of one or more doses to take into further 
development. The proposed methodology combines the advantages of the multiple 
comparison and modeling approaches, consisting of a multi-stage procedure. Dose response is 
tested in the first stage, using multiple comparison methods to identify statistically significant 
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contrasts corresponding to a set of candidate models. If a dose response signal is established 
in the first stage, the best model is then used for dose response and target dose estimation. 
Different model-based dose selection methods, incorporating both statistical significance and 
clinical relevance, were presented and evaluated via the analysis of real and simulated data. 

The MCP part of the proposed method, is seen to maintain the FWER at its nominal level, has 
power comparable to the standard trend tests under monotone dose-response settings, and is 
better under non-monotone scenarios, provided the set of candidate models is broad enough. 
The clear advantage of this new approach, in comparison to more traditional multiple 
comparison dose finding methods, is its added flexibility in searching for and identifying an 
adequate dose for future drug development through the use of modeling techniques. Several 
variants of the proposed methods are possible and have been investigated in the literature.  

Compared to traditional ANOVA based pairwise multiple comparisons, MCP-Mod has the 
advantage of enabling the use of more doses in the design, without requiring a much larger 
number of patients. In an ANOVA-type approach only the information from the respective 
dose is used to estimate the dose-response, which means the required sample size depends 
strongly on the doses studied, when a fixed precision is required at each dose. By using 
modeling techniques MCP-Mod allows to interpolate information across dose-levels, and the 
total sample size will not depend strongly on the number of doses studied. The possibility of 
using more doses will typically result in information-richer dose-finding designs and a better 
basis for decision making at end of Phase II. 

MCP-Mod can be applied to a broad class of parametric models beyond the standard set-up of 
a normally distributed endpoint in a standard ANOVA model. For example, the response 
variable might be a count, binary or time-to-event variable instead of being normally 
distributed. In addition, the final analysis has usually to be adjusted for relevant covariates 
(e.g. region, age, …), patients measurements are often recorded over time (necessitating the 
use of longitudinal models), and patients might receive more than one treatment (such as in 
cross-over or incomplete block designs). Response-adaptive versions of the MCP-Mod 
approach are also available, which may offer an appropriate compromise to explore wider 
dose ranges, without making costs prohibitive. On potentially useful application is to conduct 
seamless Phase IIa / IIb studies, where at an interim analysis proof-of-concept might be 
declared and, if successful, the information from the first stage is used to finetune the design 
of the second, dose finding stage. 

One implementation of the MCP-Mod approach is available in the DoseFinding package 
in R, which is freely available on CRAN, including the complete source code. This enhances 
reproducibility and transparency of the underlying calculations. The DoseFinding package 
includes functions for both the design and analysis of dose finding studies using MCP-Mod 
for general parametric models.  

We recommend using MCP-Mod as an efficient statistical methodology for model-based 
design and analysis of Phase II dose finding studies under model uncertainty. It is appropriate 
to improve current dose finding practices, though it does not provide a remedy for poor design. 
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6 Appendix 
 

Model-name  µ(d, θ) (*) 
linear     
linlog     

quadratic      
emax      

logistic    
  

exponential      
sigEmax    

  
betaMod      

Table 6-1 Dose-response models implemented in the DoseFinding package. 
Column (*) lists for each model the parameters that determine the 

shape of the model. For the beta model  

and for the quadratic model . 
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