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1.  Summary 

The section focuses on the characterisation and mapping of bioanalytical omics data, specifically 
proteomics, metabolomics and lipidomics data. Traditionally, Big Data/Omics approaches are used for 
hypothesis generation and thus, used in basic research – with minor impact on regulatory issues. 
However, there is significant development and potential that these technologies will be applied also 
with (hypothesis driven) confirmatory purpose for the development and application of medicines. 
Consequently, there is the need to analyse and follow-up on the ongoing development in order to 
prepare the regulatory systems for the potential impact of Bioanalytical omics data. In principal, 
proteomics is a technique that holds great promise and can offer approaches supporting the 
development of infrastructures for personalised medicine. Bioanalytical Omics technologies, besides 
proteomics, such as metabolomics and lipidomics, could potentially deliver a dynamic stratification of 
patient populations over time rather than a single snapshot measurement. Data from these fields are 
highly variable and while current initiatives have been formed to address these issues there is a 
regulatory need to sufficiently ascertain the validity of bioanalytical omics data. Validation of 
bioanalytical methods for proteomics, lipidomics and metabolomics is highly challenging, when 
compared to validation of other types of bioanalytical methods.  There is a need to define the scope 
and extent of validation necessary for these methods, and how the standards should be set in order to 
ensure appropriate data quality for use in regulatory processes. Additionally, there is large 
heterogeneity among data formats and data analysis pipelines in the fields of proteomics, 
metabolomics and lipidomics. From a regulatory point of view, it is also important to define the 
requirements or standards to which databases/data standards should adhere. Moreover, bioinformatic 
analysis of proteomics data requires highly specific methodology. Current approaches combining 
genomics and proteomics do already rely on bioinformatics algorithms for target prediction as opposed 
to direct identification by proteomics. For example, active personalisation in therapeutic cancer 
vaccination relies on proteomics analysis (see key case study in this report). In case these algorithms 
will inform therapeutic decisions, or their use is intended for the evaluation of efficacy and safety of 
medicines, their robustness and predictive value has to be ensured. From a regulatory perspective, 
there is a need to define how to assess and validate algorithms and the applied statistical methods 
and/or approaches. Thus, regulatory qualification of these methods is encouraged to (i) improve the 
quality and comparability of results; and (ii) improve the preparedness of regulatory systems for 
appropriate assessment of results.   

2.  Background / Scope 

The development of high-throughput technologies with the potential to comprehensively assess not 
only the genome but also the proteome and other molecular markers provide the possibility to identify 
unique molecular markers not only of disease but also for responsiveness to medications. This report 
focuses on the characterisation of “bioanalytical omics” including Proteomics, Metabolomics and 
Lipidomics, three fields of research/technologies, that are largely mass spectrometry-driven, whereas 
Genomics technologies (driven by sequencing) will be addressed in a different section of the report on 
Big Data. Where possible it will provide concrete examples of technologies that already have 
contributed to regulatory processes, to date mostly in the field of proteomics, and will provide an 
outlook on future technologies that are expected to have a substantial impact on regulatory processes 
in the near future.  

2.1.  Definition of Big Data 

Although the phenomenon of Big Data is widely acknowledged there is not one commonly accepted 
definition of Big Data. We refer to Big Data as are data that contain relevant information to answer a 
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given question but that will in general require advanced or specialized methods to provide a suitable 
answer within reliable constraints.  

Such methods of data analysis (i.e. models and algorithms) are subject to the growing field of data 
science which combines methods from various disciplines such as biostatistics, mathematical modelling 
and simulation, bioinformatics and computer science including data-integration, machine learning and 
high-performance computing. Data and analytic methods that will be relevant in the regulatory context 
will be exemplarily discussed within this document. The use of Big Data and their analysis call for new 
regulatory strategies and guidance to achieve their full beneficial potential. 

2.2.  Proteomics 

Proteomics is the comprehensive study of a specific proteome resulting from its genome, including 
abundances and quantifications of proteins, their variations and modifications, interacting partners and 
networks. The proteome is the entire set of expressed proteins in a given type of cell, tissue or 
organism, at a given time, under defined conditions. Much focus over the past 20 years has been on 
using sequencing to assess genome and transcriptome information. However, genomics and 
transcriptional profiles are not always reliable predictors of protein levels or activity. Hence, given that 
gene products like proteins – and not genes – are the main targets of most therapeutics, quantifying 
proteins in health and disease is of significant importance. However, the proteome is complex; many 
RNA transcripts result in more than one protein due to alternative splicing, allelic variations or 
alternative post-translational modifications (PTM). Complicating the situation is that the latter have a 
wide range of effects, broadening the range of functionality of the protein (Khoury et al. 2011). 
Whereas mutations can only occur once per position, different forms of PTMs may occur in tandem, are 
dynamic, and currently there is no method to readily assess their relative levels. Currently, the rate of 
detection of PTM is far outstripping our ability to assign biological function to these modifications. For 
comparison, the human genome contains about 20,300 protein-encoding genes, but the total number 
of proteins in human cells are proposed to outreach several millions (Ponomarenko et al. 2016) up to 
estimates of even billions of proteoforms (Smith und Kelleher 2013).  

There are two main types of proteomic studies: discovery proteomics and targeted proteomics which 
can be performed on a range of sample types including specific clinical biospecimens or samples from 
pre-clinical models such as animal models or cultured cells. Discovery proteomics refers to 
"untargeted" identification and quantification of proteins in a biological or clinical sample while 
quantitative measurements on a defined subset of total proteins in a biological or clinical sample are 
termed targeted proteomics.  Commonly used high-throughput technologies encompass different types 
of mass spectrometry (MS), protein chips and reverse-phase protein microarrays. The latter can be 
specifically used in combination with laser capture microdissection to capture various stages of 
diseases within an individual patient or compare diseased and healthy tissues within the same patient 
to develop treatment strategies. Complex bioinformatic tools are an integral and essential component 
of proteomic studies. 

Proteogenomics research (in which proteomics and genomics data are combined) is a relatively new 
“omics” field, with a significant potential to guide future approaches, and needs to be discussed. By 
combining genomic (e.g. NGS) and proteomic (e.g. mass spectrometry) information, the information 
gain is much higher, and this is expected to have a substantial impact on future clinical “omics-based” 
research, in oncology for example in defining genomic/proteomic signatures of human tumours (see 
case study below in chapter 6) 

In order to understand the genome, a firm understanding of the proteome is needed.  This is not 
trivial, but there are multiple ongoing efforts to map large scale protein-protein interaction data and 
establish comprehensive databases which will aid the interpretation of the vast genomic datasets (Li 
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und Liao 2017).  However, the analysis of the resulting multidimensional data sets and complex 
scientific problems require novel algorithm-based methodologies. Exploring the biological relevance of 
detected associations and subsequently validating those findings and establishing robust and predictive 
methods is even more challenging. As outlined below, there are a number of bioanalytical and 
biometric challenges that have to be addressed for establishing the acceptability of proteomics-based 
analytical methods in the regulatory context. However, this approach has the potential to improve 
medicines development processes and to significantly improve the availability of innovative and 
effective treatments in the future. 

2.3.  Metabolomics 

The metabolome represents the collection of all metabolites in a biological cell, tissue, organ or 
organism, which are the (end) products of cellular processes, including for instance circulating small 
molecules, such as amino acids, lipids (fats), nucleotides, and carbohydrates. These products of 
cellular processes provide an immediate barometer of cellular physiology. However, the metabolome is 
also extremely complex with a vast number of metabolites varying dramatically in chemical structure 
and concentration, but also changing rapidly over time e.g. due to degradation processes. The 
challenge in metabolomics is to find a bioanalytical approach, which would allow the reproducible 
identification of specific metabolites and quantitation of metabolites across multiple different contexts. 
The data complexity is particularly problematic for metabolomics, which is characterised by more 
heterogeneity resulting in a more complex search space than bioanalytical omics technologies due to 
the much wider range of molecular entities measured. 

Metabolomics is the scientific study of chemical processes involving metabolites, the unique 
“fingerprint” that cellular processes leave behind. A related term is “pharmaco-metabolomics”, which is 
defined as “the prediction of the effects of a drug on the basis of a mathematical model of pre-dose 
metabolite profiles” (Everett et al. 2013).  The key advantage of metabolomics is that whilst the 
genomic DNA sequence of an individual is fixed, the metabotype (metabolic phenotype) offers the 
possibility of capturing over time the influence of environmental factors and other factors on an 
individual’s response to a medicine. Given that it is estimated that social, behavioural and 
environmental factors account for 70% of the factors that influence our health, technologies that offer 
the promise of capturing this information could be relevant for regulatory decision making. 
Bioanalytical technologies for metabolomics include NMR-spectroscopy and MS-based approaches. 
Specifically, methods that do not require the application of a matrix in order to facilitate small-
molecule identification, for instance secondary ion mass spectrometry (SIMS), desorption electrospray 
ionisation (DESI) or laser ablation ESI (LAESI).  

Additionally, imaging approaches such as PET (Positron emission tomography) allow analysing the 
physiological locations of binding sites of ligands and analysis of bio-distribution in the living body, 
including brain. These imaging approaches will be addressed in a different section of the report on Big 
Data and are out of the scope for this section on bioanalytical omics but should be considered as 
another ‘bioanalytical omics’ approach.   

2.4.  Lipidomics  

Lipidomics research involves the identification and quantification of the complete lipid profile within a 
cell or tissue (the lipidome), which may represent thousands of cellular metabolites and their 
interactions with other lipids, proteins, and other metabolites. While the lipidome represents a subset 
of the metabolome, which also includes the three other major classes of biological molecules 
(proteins/amino-acids, sugars and nucleic acids), it is itself generally considered a distinct discipline, 
due to the uniqueness and functional specificity of lipids relative to other metabolites. Lipids are 
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essential metabolites that, as for the larger broader metabolome, provide readout of the cellular 
metabolic status.  They are either generated endogenously or incorporated into cells from dietary 
sources. In particular multiple human pathologies, including common chronic conditions partially with 
an underpinning inflammatory component such as cardiovascular disease, diabetes and 
neurodegenerative diseases involve changes in lipid metabolism.  As such, there is an increasing 
interest in the development of medicines which directly or indirectly target the lipid metabolic 
pathways and in this respect the analysis of the lipidome may potentially provide a useful clinical 
diagnostic method. Commonly used high-throughput technologies in lipidomics such as NMR 
spectroscopy, fluorescence spectroscope, dual polarization polarization interferometry and mass 
spectrometry, such as ESI, DESI and matrix-assisted laser desorption/ionization ionization (MALDI) 
may open avenues to the role of specific lipidomic profiles in the development and progression of 
disease metabolites within (common) pathways (Reviews on lipidomics and applications: (Vihervaara 
et al. 2014; Triebl et al. 2017).  

3.  Objectives 

• To map relevant sources of “bioanalytical omics” data and examples of data formats with focus on 
proteomics. 

• To discuss issues related to data quality and variability. 

• To identify requirements and potential pathways for the regulatory validation/qualification – paving 
the way for future applications. 

• To illustrate regulatory challenges in a key case study evaluating application in personalised 
medicine approaches. 

4.  Methods  

Public databases and peer-reviewed publications (as indicated) were considered in this report. 
Furthermore, input was received from experts at the Paul-Ehrlich-Institute, the Federal Institute for 
Vaccines and Biomedicines, Germany, that are working in the fields of Therapeutic Vaccines (Dr. 
Thomas Hinz), Monoclonal and Polyclonal Antibodies (Dr. Jörg Engelbergs), Biostatistics and Modelling 
(Dr. Christel Kamp; Dr. Gaby Wangorsch).     

5.  Data and method characterisation / qualification 

5.1.  General overview of methodology  

5.1.1.  Proteomics – Quantitative Analysis Technology 

Quantification of proteins has historically been performed using immunoassays; however, these are 
difficult to multiplex across multiple laboratories are semi-quantitative at best (Paulovich und 
Whiteaker 2016). In addition, these assays are dependent on the quality of the available antibodies, 
which often have variable reliability, specificity and sensitivity. As a result of these limitations, mass 
spectrometry is now the main quantitative technique for most “omics” approaches considered within 
this report and therefore the focus in this section will be on this technology for performing proteomic 
analyses. 

Tandem mass spectrometry (MS/MS) is the main driver for data dependent acquisition (DDA) as a 
discovery engine in proteomics. The technology allows for simultaneous sequencing of the complete 
proteome in a biological sample. However, reliable quantitative assays to follow up a predetermined 
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set of proteins are essential. In line with the ideal criteria of a biomarker, basic performance metrics of 
the bioanalytical assays used need to be established, and provide information on precision, 
repeatability, reproducibility, bias, linearity over a wide range of concentrations, the limits of 
quantification, matrix effects and selectivity and analyse stability (Grant und Hoofnagle 2014; Vidova 
und Spacil 2017); EMA guideline on bioanalytical method validation: EMEA/CHMP/EWP/192217/2009).  

In discovery (shotgun) proteomics, a MS instrument typically operates in DDA mode, the relative 
abundances of peptides (products of protein enzymatic digestion) are estimated by spectral counting – 
the number of MS/MS spectra assigned to the same peptide/protein. Alternatively, a relative 
abundance can be obtained as an integrated area of peptide peak in extracted ion chromatogram (XIC) 
using dedicated software tools for data processing. Isotopic-labelling strategies, such as isotope-coded 
affinity tag (ICAT) and stable isotope labelling by amino acids in cell culture (SILAC) are used for 
quantitative comparison across biological samples. The quantitative comparison is critical in order to 
understand the clinical validity and utility of a biomarker. The development of chemical labelling by 
isobaric tags for relative and absolute quantification (iTRAQ) and dimethyl labelling protocols has 
improved quantification accuracy.  

However, MS technology is not inherently quantitative due to large variance in sequence-dependent 
relative signal intensity. In principle, DDA-based proteomics aims at achieving unbiased and complete 
coverage of the proteome. However, DDA is driven by the immediate relative signal intensity of a 
peptide; hence, DDA results in nearly stochastic sampling, which translates into inherently limited 
reproducibility of both spectral counting and feature-based quantification. Several comprehensive 
studies on human cell lines reported approximately 50% proteome coverage in DDA mode highlighting 
the limited sensitivity and sequencing speed of DDA to cover complex proteomes. This is likely to 
create significant challenges for the identification of biomarkers since, for example, structural proteins 
accounting for cellular machineries are obviously much more abundant than regulatory proteins 
(Aebersold und Mann 2016; Vidova und Spacil 2017). However, the latter are potentially of most 
interest in relation to certain diseases or treatments thereof. 

The targeted MS/MS technique of selected reaction monitoring (SRM, sometimes referred to as 
multiple reaction monitoring, MRM), aims at the reproducible, sensitive and streamlined acquisition of 
a subset of known peptides of interest as standard for quantitative proteomics (as an alternative to 
immunoassays such as ELISA or Western Blot). In contrast to the discovery (or shotgun) proteomics 
approach with the help of DDA, the proteins of interest are predetermined and known. With the help of 
the pre-existing information, peptides are selectively and recursively isolated and then fragmented 
over their chromatographic elution time (Aebersold und Mann 2016). The SRM technique runs on a 
triple-quadrupole (QqQ) mass spectrometer, which allows for flexible, quantitative and relatively 
routine measurement of hundreds of peptides within a shorter time frame and can be used to detect 
analytes of interest within complex samples. In comparison to immunoassays, the SRM technique 
features fast assay development and deployment and is in principle capable of distinguishing highly 
similar ‘proteoforms’ such as protein variants (isoforms), post-translationally modified proteins and 
genetic variants such as single nucleotide polymorphisms (SNPs) (Vidova und Spacil 2017). A 
quantitative SRM assay as stage II in development of a biomarker test is depicted in Fig. 1 (Vidova und 
Spacil 2017). In proteomics, peptides become protein surrogates and carriers of quantitative 
information. The process of surrogate selection and evaluation requires the following steps: i) 
qualitative profiling, ii) quantitative profiling and iii) assay validation, as illustrated in Fig. 1.  
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Fig. 1: Quantitative SRM assay as stage II in development of a biomarker test (Vidova und 
Spacil 2017). 

 

Another label-free quantification (LFQ) approach used in proteomics is the data-independent 
acquisition (DIA) strategy relying on information from pre-existing high-quality spectral libraries. In 
this method, entire ranges of precursors are fragmented at the same time, followed by the acquisition 
of the fragments in a time-of-flight mass spectrometer, aimed at generating comprehensive fragment-
ion maps for a sample. The multiplexed fragment spectra are often interpreted with the help of known 
fragment spectra from large spectral libraries by software such as OpenSWATH (Aebersold und Mann 
2016). This approach avoids an abundance-based preselection of survey ions for fragmentations and 
can thereby be used for comprehensive proteome-wide quantification. The advantage is the seamless 
and rapid analysis, which eliminates the missing value problem of DDA (Aebersold und Mann 2016). 

 Conclusion 

The challenge of DDA is the stochastic nature of precursor selection and low sampling efficiency due to 
the limited speed of mass spectrometers. Even after replication of measurements, it results in missing 
individual peptide identification across runs within a larger dataset. DIA can overcome some of the 
limitations of DDA. However, DDA encompasses a wider dynamic range of detection within a complex 
matrix. In short, the best method depends on the purpose of the analysis. New analytical approaches 
are currently addressing the “missing value” issue in DDA (Zhang et al. 2016). They claim it may not 
be an intrinsic problem of DDA, rather the processing of the signal information needs to be changed to 
a new analytical workflow that recovers missing values using a protein scoring scheme for quality 
control. 

 



 
Bioanalytical Omics  Page 10/45 
 

All methods described above represent a big data approach based on statistical associations, for 
systematically probing the prototype, the state of a proteome that is associated with a specific 
phenotype. Interestingly, proteomics data sets are often linked to genomics and clinical data. For 
instance, in a pioneering study, analysing the proteogenomics of breast cancer, the functional 
consequences of somatic mutations were elucidated and identified therapeutic targets or biomarkers 
(Mertins et al. 2016). In essence, this study supported the relationship between proteotypes and 
phenotypes through association studies between genetic loci, the resulting protein network state and 
clinical disease phenotype.  

The table below provides a summary of the strengths and limitations of the various proteomic 
approaches and the data analysis pipeline (Fig. 2 and 3).  

Fig. 2: Advantages and Disadvantages of various techniques used in proteomics 
(Chandramouli und Qian 2009).  
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Fig. 3: An overview of proteomic strategies and data analysis pipelines (Chandramouli und 
Qian 2009). Note: gel-based proteomics is listed for comprehensiveness, but almost not applied 
anymore.  

 

5.1.2.  Metabolomics 

Metabolomics aims to profile all the small molecule metabolites found within a cell, tissue (e.g. blood), 
organ and use this information to understand a dynamic response to a biological manipulation such as 
a pharmacological intervention. Metabolomics therefore offer the possibility of profiling large human 
populations or investigate a range of different tissues in animal studies both rapidly and cheaply or 
monitor metabolic responses to medicines. Thus, metabolomics has the potential to deliver a dynamic 
stratification of a patient population over time rather than a single snapshot measurement. This is 
important as we know from clinical validation studies that even if a patient population is selected, e.g. 
on the basis of a relevant genetic variant, often only a percentage of that patient population will 
respond to a particular treatment. For complex diseases the analysis of one (or a limited number of) 
genetic variant(s) can be beneficial in selecting patients for treatment, but is unusually not sufficient to 
achieve sensitivity and specificity values that approach 100% (i.e. all responders can be identified 
using the biomarker and non-responders are not selected for treatment). In this respect, techniques 
such as metabolomics and proteomics could potentially complement current methods of selecting 
patients for treatment (e.g. with targeted therapies). 

However, there are a number of challenges related to these techniques which require an in depth 
understanding of the techniques and metabolic pathways. For example, some key pathways are better 
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represented by high concentration metabolites inside the cell, and thus, the coverage of the 
metabolome may become biased towards these pathways (e.g., the TCA cycle, amino acid 
metabolism). There is also the challenge of modelling datasets with large numbers of variables but 
relatively small sample sizes. The biases may also be different across different diseases. Similarly to 
proteomics, analysis of the metabolome can be either targeted or non-targeted: the non-targeted 
approach gathers data on all possible compounds in the sample, typically more than 4000 mass 
spectrometry peaks, while the targeted approach focuses on selected compounds, often to quantify 
changes thereof, for example in response to disease, or pharmacological treatment. Furthermore, 
imaging MS can provide information on the spatial distribution of metabolites from a thin tissue 
section, for example from an organ. A reconstructed two-dimensional image of the compounds 
provides the location of metabolites within the tissue. 

NMR spectroscopy and MS are the main techniques used to probe the metabolome in biofluids and 
biopsies (Nicholson et al. 2012). The advantages of both techniques, NMR and MS, are that they can 
quantify small molecules with high accuracy and require only a small amount of sample.  

MS is used to identify and to quantify metabolites and is more sensitive than many other methods 
(e.g. NMR) but has the disadvantage that it is destructive and requires significant sample preparation, 
using either chromatography or capillary electrophoresis, and as such is directly affected by the 
physical and chemical composition of the sample (Holmes et al. 2015). Thus, MS approaches tend to 
be less reproducible, more platform-dependent and susceptible to variability. Gas chromatography 
(GC) and liquid chromatography (LC) are the most commonly used techniques, particularly ultra-high-
performance liquid chromatography (UPLC), is being used increasingly for metabolic profiling. Methods 
such as capillary electrophoresis (CE) allow the analysis of samples as small as a single cell. LC-MS is 
particularly suitable for large, thermo-unstable organic molecules including many secondary 
metabolites, larger carbohydrates, and lipids. However, surface-based mass analysis has emerged with 
new MS technologies focused on increasing sensitivity, minimising background, and reducing sample 
preparation.  

However, the need to analyse metabolites directly from biofluids and tissues continues to be a 
challenge in current MS technology, largely because of the limits imposed by the complexity of the 
samples, which contain thousands to tens of thousands of metabolites of varying size, solubility and 
spatial distribution. Among the technologies being developed to address some of these challenges is 
Nanostructure-Initiator MS (NIMS), a desorption/ionization approach that does not require the 
application of matrix and thereby facilitates small-molecule (i.e., metabolite) identification. However, 
this does not provide spatial information. MALDI is an alternative technique but the application of a 
MALDI matrix can add significant background at <1000 Da that complicates analysis of the low-mass 
range (i.e., metabolites). In addition, the size of the resulting matrix crystals limits the spatial 
resolution that can be achieved in tissue imaging. Because of these limitations, several other matrix-
free desorption/ionisation approaches have been applied to the analysis of biofluids and tissues. 

SIMS was one of the first matrix-free desorption/ionisation approaches used to analyse metabolites 
from biological samples. SIMS uses a high-energy primary ion beam to desorb and generate secondary 
ions from a surface. The primary advantage of SIMS is its high spatial resolution (as small as 50 nm), 
a powerful characteristic for tissue imaging with MS. However, SIMS has yet to be readily applied to 
the analysis of biofluids and tissues because of its limited sensitivity at >500 Da and analyte 
fragmentation generated by the high-energy primary ion beam. DESI is a matrix-free technique for 
analysing biological samples that uses a charged solvent spray to desorb ions from a surface. 
Advantages of DESI are that no special surface is required, and the analysis is performed at ambient 
pressure with full access to the sample during acquisition. A limitation of DESI is spatial resolution 
because "focusing" the charged solvent spray is difficult. However, a recent development, LAESI is a 
promising approach to circumvent this limitation.  
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NMR-spectroscopy is the only detection technique which does not rely on separation of the analytes. It 
enables the measurement of all kinds of small molecule metabolites simultaneously. The main 
advantages of NMR are high analytical reproducibility with a detection limit in the sub-micromolar 
range, the simplicity of sample preparation and the non-destructive nature of the analysis. Moreover, 
new solid-state NMR methods allow analysis of samples of less than 1 mg, allowing to study tissue 
heterogeneity, e.g. between tumour tissue and tumour margins. Practically, however, it is relatively 
insensitive compared to mass spectrometry-based techniques. Other methods not as frequently 
applied, include ion-mobility-spectrometry, electrochemical detection (coupled to HPLC), Raman 
spectroscopy and radiolabelling (when combined with thin-layer chromatography). 

Summary 

The table below (Holmes et al. 2015) and Fig. 4 summarises the strengths and weaknesses of 
analytical platforms currently used in metabolic phenotyping 

However, even when a single technique is considered there are multiple different commercial platforms 
available with variable measurement options which have different detection capabilities and hence 
differing bioanalytical performance (Holmes et al. 2015). In addition, there are likely to be differences 
depending on the type of sample/tissue chosen for analysis, e.g. a biomarker for a disease process in 
urine is unlikely to be the same as that in blood plasma. Any biomarker would then need to be 
validated against the current gold standard current diagnostic test (if available) to demonstrate e.g. 
specificity and sensitivity. Thus, there is a need for (i) standardisation of analytical techniques, and (ii) 
harmonisation of metabolic profiling and biomarker identification for clinical phenotyping in order to 
meet regulatory requirements. The Standard Metabolic Reporting Structures (SMRS) group, formed in 
2003, recommends standards for conducting and reporting metabolomics studies (Lindon et al. 2005). 
Other groups have recognised the need for harmonizing procedures in the clinical and surgical setting 
(Nicholson et al. 2012). 

Standardisation and harmonisation efforts are crucial in order to establish robust, reproducible and 
comparable diagnostic methods on different platforms. From the regulatory point of view the main 
question is, are there methods -running on different platforms- delivering comparable results with 
comparable clinical value?  
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Fig. 4: Strengths and weaknesses of analytical platforms used in metabolic phenotyping 
studies (Holmes et al. 2015)

 

 

 



 
Bioanalytical Omics  Page 15/45 
 

5.1.3.  Lipidomics 

As for metabolomics, analysis of lipids faces multiple challenges due to the large structural complexity 
and heterogeneity in the compounds measured.  Lipids can be divided into eight categories, i.e. fatty 
acyls, glycerolipids, sphingolipids, glycerophospholipids, saccharolipids, sterol lipids, prenol lipids and 
polyketides, which when combined with their complex structure creates significant analytical 
challenges (Sethi und Brietzke 2017). Lipidomics is broadly divided into two separate approaches: (1) 
a targeted, highly sensitive, and quantitative approach using liquid chromatography-tandem MS (LC-
MS/MS), and (2) a high-throughput discovery (shotgun) lipidomics approach that may only detect the 
most abundant species (O'Donnell et al. 2014). Thus LC-MS/MS is the approach of choice when specific 
lipids are of interest and accurate quantitation is required; however, separation times can be long.  
Shotgun lipidomics enables the analysis of many samples in a short time but it is not quantitative and 
low abundance lipids are missed. 

The development of sensitive bench top mass liquid chromatography-MS (LC-MS) has revolutionized 
the lipidomics field and enabled the study of small amounts of complex mixtures of diverse biological 
samples.  O’Donnell et al (2014) highlights that LC-MS has solved many of the problems of the older 
approaches such as (1) low sensitivity and selectivity (thin layer chromatography and high-pressure 
liquid chromatography), (2) the need for time-consuming derivatization methods (eg, for gas 
chromatography/MS), and (3) the requirement for radioisotopes with their inherent health issues, 
notably in regard to 32P-orthophosphate. When compared with this, LC-MS combines high sensitivity 
with the ability to detect, characterize, and quantify individual molecular species directly without 
derivatisation or purification (O'Donnell et al. 2014). 

In addition, recent progress in mass spectrometric techniques such as ESI, DESI and MALDI, often in 
combination with separation techniques, have enabled an increase in the sensitivity, specificity and 
throughput of lipidomic screens from complex biological samples. However, none of the currently 
available MS methods are capable of outputting the complete lipidome and multiple MS platforms 
would be needed, significantly decreasing the analytical efficiency. NMR spectroscopy, fluorescence 
spectroscope and dual polarization interferometry techniques are also used; NMR has the advantage 
that it is quantitative and non-destructive,  but it suffers from a lack of sensitivity and resolution of 
lipids in complex mixtures (Yang und Han 2016).   

A summary of the various methodologies is provided in the table below (Fig. 5); none of the currently 
available MS are capable of outputting the complete lipidome; all approaches have inherent 
advantages and disadvantages which highlights the need to tailor the approach to the question asked. 
For example ESI-MS-based techniques offer the ability for rapid analysis potentially enabling the 
capture of metabolic changes driven by disease but may have a decreased sensitivity in the detection 
of low-abundant lipids and problems of quantitation in the absence of internal standards (Sethi und 
Brietzke 2017).  More recently the combination of multiple approaches has enabled lipid imaging in 
tissue samples to determine the spatial localization of molecular species in an organ of interest, but the 
resolution of this technique is not yet at a cellular or subcellular level. As technological methods 
continue to evolve, a major challenge lies in the development of computational and bioinformatics tools 
for the analysis of the very large datasets produced.   
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Fig. 5: Advantages and Disadvantages of Analytic Approaches in Lipidomic Research (Sethi 
und Brietzke 2017) 

 

 

5.2.  Sources and Structure 

Compared to genomics, public deposition and storage of MS-based proteomics data are still less 
developed due to the inherent complexity of the data and the variety of data types and experimental 
workflows (Perez-Riverol et al. 2015). This is even more true in the fields of metabolic and lipidomics, 
which are typically considered less matured than the field of proteomics. 

Examples of relevant databases are provided in the following sections. 

5.2.1.  Proteomics data 

• Well established databases (see also Fig. 6) for proteomics data are the Global Proteome Machine 
Database (GPMDB), PeptideAtlas, and the PRIDE database. Additionally, other resources such as 
ProteomicsDB, MassIVE (Mass Spectrometry Interactive Virtual Environment), Chorus, MaxQB, 
PASSEL (PeptideAtlas SRM Experiment Library), MOPED (Model Organism Protein Expression 
Database), PaxDb, Human Proteinpedia, and the human proteome map (HPM). Furthermore, there 
are several more specialized resources. 
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• The SWISS-PROT is an annotated protein sequence database consists of sequence entries, which 
are updated monthly. Sequence entries are composed of different line types, each with their own 
format. For standardization purposes, the format of SWISS-PROT (see 
http://www.expasy.ch/txt/userman.txt) follows as closely as possible that of the EMBL Nucleotide 
Sequence Database. The SWISS-PROT database distinguishes itself from other protein sequence 
databases by three distinct criteria: (i) annotations, (ii) minimal redundancy and (iii) integration 
with over 100 other databases. In 2004, all annotations of PTM features were standardized by 
creating a controlled vocabulary and updating the entries in Swiss-Prot (Farriol-Mathis et al. 2004). 
UNIPROT (Fig. 6) combines the reviewed and manually annotated SWISS-Prot database with the 
unreviewed and computationally analysed TrEMBL database.   

• Recently, the ProteomeXchange (PX) consortium has been formed to enable a better integration of 
public repositories to implementation of standardized submission and dissemination pipelines for 
proteomics information. By August 2014, PRIDE, PeptideAtlas, PASSEL, and MassIVE are the active 
members of the consortium (Fig. 6). 

• The SCALLOP consortium studies genetic associations with proteins as a collaborative framework 
on the Olink Proteomics platform. 

 

Challenges related to data sources and structures: 

• It is important to mention here that no single proteomics data resource will be ideally suited to all 
possible use cases and all potential users.  

• The identification of false-positives and false-negatives in big resources or when different datasets 
are combined is still a challenge (Perez-Riverol et al. 2015). Before comparing resources, standard 
criteria should be set in order for the comparisons to be meaningful: (i) sample source; (ii) sample 
handling and LC-MS/MS technology; (iii) depth (comparable number of runs, technical 
sophistication; informatics must account for variations in depth; (iv) search libraries/databases; 
(v) search algorithms; (vi) modifications searched; (vii) mapping to proteins; (viii) protein 
interference (method for removing redundancy from the list or proteins with peptide evidence); 
(ix) error rate (result sets should have well-defined and low false discovery rates) (Farrah et al. 
2014). 

• Most of these databases accept data from heterogeneous sources, which presents a challenge in 
analysis. For instance, data acquired with different proteomics technologies, different 
computational pipelines and different quantification strategies may be combined in the database 
(Schaab et al. 2012), resulting in an uncontrolled false discovery rate. 

• Several major standardisation initiatives worldwide are currently ongoing in order to provide 
information on assays that can be multiplexed, standardized, reproduced and shared across 
laboratories and instrument platforms. The ultimate aim is to drive a precise and highly specific 
quantification of proteins in a robust and reproducible manner (see section 5.4). 

• Finally, another challenge is that at present, studies integrating different “omics” technologies are 
becoming more common. This type of studies poses a challenge for traditional repositories (which 
are usually field-specific) and researchers. However, it is far from straightforward to link data from 
different approaches, for instance MS-based proteomics and RNAseq data obtained in the same 
study. As discussed, validating, the associations between proteomics and other omics will be key to 
understanding their functional associations. 
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Fig. 6: Overview of the Main Uses and Applications of Public Proteomics Data Sets (Martens 
und Vizcaíno 2017). 

 

 

5.2.2.  Metabolomics data sources 

In general, there is a limited availability and incompleteness of the databases to identify metabolites. 
Validation of findings is difficult because of the limited distribution and high costs of the technology and 
analytical variation between spectrometer systems. Examples of metabolomics data sources include: 

• MetaboLights (http://www.ebi.ac.uk/metabolights). Database for Metabolomics experiments and 
derived information. The database is cross-species, cross-technique and covers metabolite 
structures and their reference spectra as well as their biological roles, locations and concentrations, 
and experimental data from metabolic experiments. 

• ChEBI (https://www.ebi.ac.uk/chebi). Chemical Entities of Biological Interest (ChEBI) is a freely 
available dictionary of molecular entities focused on ‘small’ chemical compounds. The term 
‘molecular entity’ refers to any constitutionally or isotopically distinct atom, molecule, ion, ion pair, 
radical, radical ion, complex, conformer, etc., identifiable as a separately distinguishable entity. 
The molecular entities in question are either products of nature or synthetic products used to 
intervene in the processes of living organisms. ChEBI incorporates an ontological classification, 
whereby the relationships between molecular entities or classes of entities and their parents and/or 
children entities are specified. 

• Metabolomics-Workbench: NIH funded; includes databases and reference standards; The 
Metabolomics Workbench Metabolite Database contains structures and annotations of biologically 
relevant metabolites. The database contains over 61,000 entries, collected from public repositories 
such as LIPID MAPS, ChEBI, HMDB, BMRB, PubChem, and KEGG. The Human Metabolome 

http://www.ebi.ac.uk/metabolights
https://www.ebi.ac.uk/chebi
http://www.lipidmaps.org/
http://www.ebi.ac.uk/chebi/
http://www.hmdb.ca/
http://www.bmrb.wisc.edu/
http://pubchem.ncbi.nlm.nih.gov/
http://www.genome.jp/kegg/
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Gene/Protein Database (MGP) of metabolome-related genes and proteins contains data for over 
7300 genes and over 15,500 proteins. The main objective of RefMet is to provide a standardized 
reference nomenclature for both discrete metabolite structures and metabolite species identified by 
spectroscopic techniques in metabolomics experiments — an essential prerequisite for the ability to 
compare and contrast metabolite data across different experiments and studies. To this end, a list 
of 42,000 names from a set of over 200 MS and NMR studies on the Metabolomics Workbench has 
been used as a starting point to generate a highly curated analytical chemistry-centric list of 
common names for metabolite structures and isobaric (compounds with same nominal mass but 
different molecular formulae) species that present unique separation challenges.  

5.2.3.  Lipidomics data sources 

Examples of lipidomics data sources include the following: 

• LipidMaps (http://www.lipidmaps.org). The NIH funded multi-institutional effort was created in 
2003 with the aim of identifying and quantitating, using a systems biology approach and 
sophisticated mass spectrometers, all of the major — and many minor — lipid species in 
mammalian cells, as well as to quantitate the changes in these species in response to perturbation, 
such as upon treatment. The goal is to better understand lipid metabolomics in diseases. They 
provide several resources, including MS standards and a new lipid classification system - the first 
internationally accepted lipid classification, nomenclature, and structural representation system 
suitable for the complex bioinformatics data basing required analysing the numerous molecular 
species of lipids. 

• Metlin: https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage; Metlin is an MS/MS 
metabolite database including lipids.  

• HMDB: http://www.hmdb.ca: a freely available electronic database containing detailed information 
about small molecule metabolites found in the human body. It is intended to be used for 
applications in metabolomics, clinical chemistry, biomarker discovery and general education. The 
database is designed to contain or link three kinds of data: 1) chemical data, 2) clinical data, and 
3) molecular biology/biochemistry data. The database contains 114,110 metabolite entries 
including both water-soluble and lipid soluble metabolites as well as metabolites that would be 
regarded as either abundant (> 1 uM) or relatively rare (< 1 nM). Additionally, 5,702 protein 
sequences are linked to these metabolite entries.  

• ELIFE: European Lipidomics Initiative: The primary aim of the 'European lipidomics initiative' 
(ELIFE) was to mobilise and organize key stakeholders, researchers and end-users in the area of 
metabolomics, especially lipidomics research, and to further define this field of research in terms of 
participants, scientific contents and strengths. 

• LipidBlast: http://fiehnlab.ucdavis.edu/projects/lipidblast.  An in-silico database that can be used 
to annotate and identify hundreds of lipids in plants, bacteria, algae, animals, humans and viruses.  

 

In conclusion, as outlined in sections 5.2.1 - 5.2.3 and as shown in Fig. 6, the 
proteomics/metabolomics/lipidomics are structured, but inherently complex and heterogeneous due to 
the large variety of data types.  For proteomics, there are different levels of processing, from raw data 
files to peptide identification, to protein knowledge-based information. Databases accept data from 
heterogeneous sources and represent repositories of diverse lists for protein identification. For 
instance, PeptideAtlas supports a non-redundant protein identification list of 1% FDR, whereas GPMDB 
computes a confidence value for each peptide and lists all peptide and protein identifications output 
(Farrah et al. 2014), It will also be necessary to standardise how data are formatted in order to link 

http://www.lipidmaps.org/
http://www.lipidmaps.org/data/classification/LM_classification_exp.php
https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage
http://www.hmdb.ca/
http://fiehnlab.ucdavis.edu/projects/lipidblast
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the given analyte to defined metabolites or proteins and the quantity (Lindon et al. 2005). To ensure 
precision for metabolic analysis, it will be imperative to standards the terminology utilised to identify 
compounds and to adhere to existing naming conventions, such as IUPAC 
(http://www.sbcs.qmul.ac.uk/iupac/) or KEGG (http://www.genome.jp/kegg/). Also, the linkage to 
quantities will be variable, as e.g. absolute quantities require a specific unit, whereas relative 
quantities requires referring to the context in which the values were measured.  

5.3.  Veracity: Data quality and validation 

The following sections will focus on proteomics rather than metabolomics or lipidomics, since in general 
the latter two fields are much less advanced compared with proteomics and thus application in 
regulatory processes is likely to be farther away for these fields. However, the majority of the issues 
raised are may be relevant for all across “omics” technologies. 

Compared to genomics, proteomics is much more complicated and dynamic and thus, could face more 
complex challenges with regard to ensuring reliability of the generated data. Proteins occur in a wide 
range of concentrations in the body, making it extremely difficult to detect low abundance proteins in a 
complex biological matrix.  

Membrane proteins constitute 30% of the typical proteome, which creates particular challenges due to 
their propensity to aggregate and precipitate in solution which confounds their analysis (as well as 
potentially the measurement of other compounds). The target residues for tryptic cleavage (i.e., lysine 
and arginine) are mainly absent in transmembrane helices and preferentially found in the hydrophilic 
part of these lipid bilayer-incorporate proteins (Chandramouli und Qian 2009). As such some 
techniques are not suitable for the analysis of membrane proteins necessitating the development of 
alternative techniques. 

Serum Proteomics and Biomarker Discovery: more than 10,000 different proteins are present in the 
human serum and many of them are secreted or shed by cells during different physiological or 
pathological processes. Thus, serum offers opportunities for biomarker discovery but creates huge 
challenges, given the complexity of the proteins it contains and the considerable differences in their 
individual concentrations, ranging from several milligrams to less than one picogram per millilitre. The 
analytical challenge for biomarker discovery in, for example, selection of a target patient population, 
arises from the high variability in the concentration and state of modification of many human plasma 
proteins between different individuals (Chandramouli und Qian 2009) in addition to the dynamic nature 
of expression over both location of measurement and time. Thus, even if the correlation between 
serum levels and concentrations in relevant tissues is well established, there are concerns that 
variability in sampling could lead to unwanted variability (e.g. false positives or false negatives). These 
factors are likely to impact downstream challenges to identify biomarkers of consistent stability and 
reproducibility for regulatory decision making. 

5.4.  Reproducibility of raw data processing and concordance between 
processing methods (a specific challenge of bioanalytical omics 
approaches) 

To accurately evaluate proteomics data, a question that needs to be asked is how efficient a protein 
extraction method is. It is important to know whether different methods for protein concentration 
measurements will generate different results due to different yield. In addition, since proteins have to 
be extracted from membrane, cytoplasm, nucleus, and other organelles for proteomic analyses, 
different methods are prone to have different outcomes. While in theory all proteins should be included 
in the analysis, this is often not the case in real experiments when diverse extraction methods with 

http://www.sbcs.qmul.ac.uk/iupac/
http://www.genome.jp/kegg/
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different yield efficiencies are utilized even for the same type of tissue or cell samples. In addition, 
sample preparation will have significant effects on results, especially for unstable biomarkers.  

Similar concerns exist and are maybe amplified for metabolomics and lipidomic analyses, which if 
anything is more variable and dynamic than proteomics analysis.  The next section will describe the 
challenges with regards to variability and its influence on data quality and validation.  

5.5.  Variability: Data heterogeneity and standards 

For a biomarker to be applicable in the clinical setting, measurements need to be reliable, and 
measurements need to be reproducible across methods/platforms and laboratories, and inadequate 
analytical validity ultimately affects the clinical utility of the biomarker test.  One major factor affecting 
reproducibility of measurements is the simultaneous elution of many more peptides than can be 
measured by mass spectrometers. This causes stochastic differences between experiments due to 
data-dependent acquisition of tryptic peptides. Early large-scale shotgun proteomics analyses showed 
considerable variability between laboratories (Peng et al. 2003; Washburn et al. 2001), although 
reproducibility has been improved using Orbitrap mass spectrometers (Tabb et al. 2010). Targeted 
proteomics, in general, demonstrates increased reproducibility and repeatability compared with 
shotgun methods, although at the expense of data density and effectiveness (Domon und Aebersold 
2010). 

A report in 2009 by the HUPO Test Sample Working Group revealed that out of 27 laboratories which 
examined the same sample that consisted of 20 highly purified human proteins, only 7 laboratories 
reported all 20 proteins correctly (Bell et al. 2009). A subsequent centralized analysis of the raw data 
revealed that – nevertheless - all 20 proteins had in fact been detected by all 27 labs. The sources of 
problems encountered in the study included missed identifications (false negatives), environmental 
contamination, database matching, and curation of protein identifications. As in recent years search 
engines and databases improved, it is likely that the fidelity of MS-based proteomics has increased. 
However, in the context of regulatory decision making where such proteins may be used to stratify 
patients or monitor efficacy, such inconsistency is a major cause for concern.   

This highlights the requirement for systematic benchmarking and validation of those analytical 
technologies, with particular focus on the reproducibility of results. Furthermore, there is a need to 
better understand variability and to agree on harmonised protocols. 

To analyse the robustness, reproducibility and utility of a targeted proteomics approach, a specific 
strategy, the dimensionless retention time concept as an advance, iRTs, was examined in a 
multicentric setting, involving 28 laboratories (Vialas et al. 2017). This initiative revealed that 
transferring and sharing peptide retention times across different chromatographic set-ups both intra- 
and inter-laboratories is feasible. Parallel quantitative analyses showed a high reproducibility despite 
the variety of experimental strategies used and the diversity of analytical platforms employed. 
However the authors discuss that the highly reproducible results are based on the centralized 
preparation of the samples used in this study (Vialas et al. 2017). This suggests that harmonized 
protocols and analysis methods could help to increase reproducibility. 

Several groups have evaluated the number of replicates necessary to observe a particular percentage 
of the proteins in a sample (Liu et al. 2004; Kislinger et al. 2005; Slebos et al. 2008). Others have 
examined how the numbers of spectra matched to proteins compared among analyses (Balgley et al. 
2008; Washburn et al. 2003). The few comparisons across different laboratories for common samples 
have shown low reproducibility (Bell et al. 2009; Chamrad und Meyer 2005; Omenn et al. 2005) 
raising significant concerns with regard to reproducibility. Tabb et al., 2010, observe peptide lists from 
pairs of technical replicates overlapped by only up 60% at maximum (Tabb et al. 2010). Moreover, our 
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proteomics experts report when analysing a replicate from an identical sample, the approximately 
3000 peptide sequences detected demonstrate a typical overlap of only approximately 60%. Several 
rounds of technical replicates could help to increase the statistical overlap and recovery rate. 

The complexity of the analyses leads to variation in the peptides and proteins identified. Minor 
differences in liquid chromatography, for example, may change the elution order of peptides or alter 
which peptides are selected for MS/MS fragmentation. Small differences in fragmentation may cause 
some spectra to be misidentified by database search software. A major source of variability is the 
sampling of complex mixtures for MS/MS fragmentation. As a result, proteomic technologies may be 
inherently less amenable to standardisation than e.g. DNA sequencing. Existing literature has 
emphasized measurement variability in response to changes in analytical techniques: (i) fluctuations 
can occur in the autosampler, drawing peptides from sample vials (van Midwoud et al. 2007); (ii) the 
use of multidimensional separation can introduce more variation (Delmotte et al. 2009; Slebos et al. 
2008); (iii) instrument platforms (Elias et al. 2005); identification algorithms ( (Resing et al. 2004; 
Kapp et al. 2005), and many configuration choices during the bioinformatics steps of protein 
identification (Tabb 2013)  produce variability (Tabb et al. 2010).  

Several initiatives have created tools to minimize variability and increase standardisation. One example 
is bioinformatics tools such as Scaffold which increases the confidence in protein identification reports 
through the use of several statistical methods (Searle 2010) or several statistical assessments 
combined to examine the quality control (Wang 2017). Another example is a standardized AP-MS 
workflow that (i) helps to achieve interlaboratory reproducibility despite differences in mass 
spectrometry configurations and (ii) improves the sensitivity by combining independent data sets 
(Varjosalo et al. 2013). Besides standardisation efforts and novel proteomics technologies, 
comparative data analysis will improve data quality in proteomics (Mann 2009).  

Analysis of variability in system performance entails two different measures that are often conflated. 
The first is repeatability, which represents variation in repeated measurements on the same sample 
and using the same system and operator. When analysing a particular sample, the same way on the 
same instrumentation, the variation in results from run-to-run can be used to estimate the 
repeatability of the analytical technique. The second is reproducibility, which is the variation observed 
for an analytical technique when operator, instrumentation, time, or location is changed. In 
proteomics, reproducibility could describe either the variations between two different instruments in 
the same laboratory or two instruments in completely different laboratories (Tabb et al. 2010). 

A high quality proteomics dataset should fulfil at least two criteria with regards to variability: 1) 
repeatability of data generated within the same laboratory and 2) consistency of data generated from 
different laboratories (Gu und Yu 2014). Such variation has major implications for the use of 
proteomics to support regulatory decision-making. Therefore, standardisation efforts are essential.  

Major standardisation efforts: 

Proteomics standardization initiatives include the following: 

• Proteomics Standards Initiative by the Human Proteome Organization (HUPO-PSI). 

Recommendations for standardisation of collection, integration, storage, and dissemination of 
proteomics data were published. They aim at delivering a set of guidelines representing the minimal 
information required to report and sufficiently support assessment and interpretation of a proteomics 
experiment (“minimum information about a proteomics experiment;” the MIAPE guidelines). 
Additionally, the MIAPE – Mass Spectrometry Informatics module has been designed to specify a 
minimal set of information to document a mass spectrometry-based peptide and protein identification 
and characterisation experiment. The MIAPE: Mass Spectrometry Quantification module identifies the 
minimum information required to report the use of quantification techniques in a proteomics 
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experiment, sufficient to support both, the effective interpretation and assessment of the data and the 
potential recreation of the results of the data analysis. As for all MIAPE documents, these guidelines 
will evolve and will be made available on the PSI website at the url http://psidev.info (Taylor et al. 
2007), The MIAPE initiative is embedded within the framework of The Minimum Information for 
Biological and Biomedical Investigations (MIBBI) project (Taylor et al. 2008).   

 
• Clinical Proteomic Technology Assessment for the Cancer by National Cancer Institute.  

The ProteomeXchange (www.proteomexchange.org) consortium has been set up to provide a single 
point of submission of MS proteomics data to the main existing proteomics repositories such as PRIDE 
and PeptideAtlas. Two new members have joined the consortium: MassIVE and jPOST. 
ProteomeCentral remains as the common data access portal, providing the ability to search for data 
sets in all participating PX resources, now with enhanced data visualization components. The primary 
goals of these initiatives were aimed at facilitating data comparisons from different laboratories and for 
overall data quality evaluation (Deutsch et al. 2017). 

Harmonization efforts of the Clinical Proteomic Tumour Analysis Consortium (CPTAC) portal 
(http://assays.cancer.gov) serves as an open-source repository of well-characterized targeted 
proteomic assays. The goal is to enable robust quantification of all human proteins and to standardize 
the quantification of targeted MS-based assays to ultimately enable harmonization of results over time 
and across laboratories (Whiteaker et al. 2016). 

Other current, global initiatives are aimed at the development of common resources of validated 
protein–protein interactions and protein-binding molecules for standardized characterisation of the 
human proteome, especially its potentially clinically relevant constituents. These programs include 
ProteomeBinders, AffinityProteome (both at www.proteomebinders.org), Affinomics 
(www.affinomics.org), Human Protein Atlas (www.proteinatlas.org), and Human Antibody Initiative 
(HUPO). A noteworthy aspect of these initiatives is their common focus on developing standard 
approaches and criteria for characterisation of affinity reagents for analysis of the human proteome 
(Stoevesandt und Taussig 2012; Gloriam et al. 2010; Taussig et al. 2007). Such criteria are virtually 
nonexistent despite the fact that antibody binding-based techniques are usually considered as the 
“gold standard” in specific qualitative detection of a protein (Ivanov et al. 2013). 

Metabolomics Standardisation efforts include the following: 

CIMR (http://msi-workgroups.sourceforge.net/): The Metabolomics Standards Initiative’s Core 
Information for Metabolomics Reporting (CIMR) comprises modules for particular aspects of 
metabolomics workflows; various biological disciplines (for example, microbiology, mammalian biology, 
plant biology); analytical techniques such as chromatography and NMR; and the use of various 
statistical techniques. 

Standardisation recommendation for linkage to clinical output 

In order to link proteomics data to clinical outcome data and be able to combine such datasets, it is 
important not only to standardize proteomics datasets but also the clinical data. In this respect, clinical 
data standardisation efforts, such as CDICS (https://www.cdisc.org/), are also important. 
Standardisation efforts like CDISC would facilitate sharing of structured data across different systems. 
So far, two industry initiatives can be identified using CDISC standards: CSDR 
(https://www.clinicalstudydatarequest.com/Default.aspx) and the Yoda project 
(http://yoda.yale.edu/data-holders).   

 

 

http://psidev.info/
http://msi-workgroups.sourceforge.net/
https://www.cdisc.org/
https://www.clinicalstudydatarequest.com/Default.aspx
http://yoda.yale.edu/data-holders
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Standardisation of informatics technologies and data formats 

One of the most important themes of current standardisation initiatives centers around the 
standardisation of applied informatics technologies. Several major directions in standardisation efforts 
can be currently identified, including bioinformatics frameworks for data sharing, integration, 
processing, and interpretation. However, a hurdle to these efforts are the proprietary data formats and 
data processing algorithms associated with commercial mass spectrometers, programming interfaces 
and software platforms for data acquisition and processing (Chambers et al. 2012). Availability of 
standardized, platform-independent computational pipelines for analysis and interpretation of 
proteomics data as well as establishment of common data output formats are essential for data sharing 
and unbiased benchmarking of technologies.  

Considerable efforts have been made to generate common data formats (Deutsch 2008; Côté et al. 
2010; Martens et al. 2011; Pedrioli et al. 2004; Schramm et al. 2012; Keller et al. 2005) and data 
format converters (Chambers et al. 2012; Keller et al. 2005; Kessner et al. 2008; Sturm et al. 2008). 
Development of standardized platforms will enable rigorous assessment of diverse computational 
approaches not only to accelerate proteomics research but also to harmonize data (Ivanov et al. 
2013).  

5.6.  Velocity: Speed of change 

Speed of change in proteomics techniques 

A study in 2008 evaluated that until then around 109 unique protein serum markers were approved by 
the FDA including over 20 protein-based cancer biomarkers (Anderson 2010). Astonishingly, the 
majority of these (88 of 109) were developed before 1993 by immunoaffinity assays. After the advent 
of proteomics (around 1995; (Wilkins 2009)) only 22 additional diagnostic protein markers were 
approved (Steffen et al. 2016). Thus, on average the speed from discovery to approval has been 
extremely slow with 1.5 new approved protein assays by the FDA per year. This suggests that the 
current discovery pipeline has been inefficient and potentially suffering from high false-positive rates, 
which hampers the validation of true biomarkers (Vidova und Spacil 2017). Robust assays that adhere 
to precision, repeatability, reproducibility, linearity, limits of quantification, matrix effects, selectivity, 
and analyte stability are needed to accelerate the biomarker discovery pipeline. 

The genome is relatively static, whereas the proteome, metabolome and lipidome are dynamic and 
spatial.  Proteins are continually undergoing changes, e.g., binding to the cell membrane, interacting 
with partner proteins to form protein complexes, or undergoing synthesis and degradation.  Similarly, 
metabolites and lipids by definition have a signalling role and their formation and destruction, and 
modification may be highly dynamic. 

The proteome is highly variable. The measured variation is considerable from person to person under 
different environmental conditions, across different tissues or even within the same person at different 
ages or health status due to e.g. post-translational changes or changes in protein-protein-RNA-
complexes that may vary and reflect functional changes. These challenges equally apply to the 
metabolome and lipidome. Thus, developing biomarkers which meet the criteria set out in section 5.1 
is highly challenging. Proteomics data change from condition to condition, and over time as a result of 
the analysis or the disease process. Moreover, the comparability to genomics is not always a given. For 
example, the level of transcription of a gene gives only a rough estimate of its level of translation into 
a protein. An mRNA produced in abundance may be degraded rapidly or translated inefficiently, 
resulting in only a small amount of protein. 
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5.7.  Accessibility of data 

Most databases described above include data from publicly research initiatives. The public availability 
of relevant ‘omics’ data via appropriately accessible registries and databases is a key requirement for 
developing Big Data analysis approaches. 

An important aspect with significant impact on the accessibility and usability of data are related to 
privacy law, i.e. in case of analysing data derived and linked to participants in clinical studies or 
individual patients, an appropriate protection of personal data has to be ensured. There are differences 
in privacy law between different countries and regions that have to be taken into account in time (as 
early as possible) and addressed within specific projects/studies or efforts to make these data available 
for secondary analysis/data sharing.  

Approaches for the management of patient level data which do not require the physical transfer from 
data like DataSHIELD might be helpful in this context (Budin-Ljøsne et al. 2015). 

5.8.  European guidelines on regulatory use of ‘bioanalytical omics’ data 

No specific EMA guidelines are available for proteomics, metabolomics or lipidomics technologies. The 
EMA guideline on bioanalytical method validation EMEA/CHMP/EWP/192217/20091 entails 
recommendations for the validation of bioanalytical methods which can be applied to proteomics 
approaches. Refer to the part of this report on ‘Genomics’ for a more detailed summary of available 
guidelines in relation to omics and biomarkers. 

5.9.  General overview - method qualification  

General methodical approaches and requirements for regulatory decision-making regarding biomarkers 
are specified in the guideline Qualification of novel methodologies for drug development 
(EMA/CHMP/SAWP/72894/2008)2. 

An overview of common challenges is provided in the guidance document ‘Essential considerations for 
successful qualification of novel methodologies’3. The most relevant points to consider from this 
document are summarized below.  

 1. Definition of the Context(s) of Use (CoU)  

• The Context of Use definition should take into account the (vi) Dependence to environmental 
conditions; the conditions will have a strong impact specifically when utilizing metabolomics 
approaches for biomarker discovery; and the (viii) Clinically feasible, e.g. biomarker status should 
be possible to determine with minimum discomfort for the patient 

• The Context of Use is the critical reference point for the regulatory assessment of any qualification 
application.  

2. Selection of Endpoint(s)  

• (ii) Mechanistic understanding of the relationship between the biomarker, the disease and/or 
response to treatment; diagnostic and prognostic performance (sensitivity and specificity) should 
be demonstrated.  

• (iii) Diagnostic accuracy: specific, sensitive and predictive (correlated with the disease state or 

 
1http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/document/document_detail.jsp?webContentId=WC500109
686%26mid=WC0b01ac058009a3dc  
2http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2009/10/WC500004201.
pdf  
3 http://www.ema.europa.eu/docs/en_GB/document_library/Other/2017/12/WC500239928.pdf  

http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/document/document_detail.jsp?webContentId=WC500109686%26mid=WC0b01ac058009a3dc
http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/document/document_detail.jsp?webContentId=WC500109686%26mid=WC0b01ac058009a3dc
http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2009/10/WC500004201.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2009/10/WC500004201.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Other/2017/12/WC500239928.pdf
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endpoint they wish to capture); predictive values for medicine response and likelihood ratio (LR) 
are to be addressed. Levels of positive or negative predictive value are to be characterised.  

3. Statistical Analysis Plan (SAP)  

• The study design and data analysis must support the intended context of use (CoU).  

• The statistical planning of the qualification approach must be appropriate and follow a pre-specified 
statistical analysis plan (SAP).  

• Exploratory studies and approaches can be included as appropriate.  

• Generally, confirmatory studies and data sets are required to achieve the qualification of a method. 
It will have to be justified whether the qualification objective can be supported appropriately by 
retrospective studies, or whether prospective studies are required.  

• Cross-validation approaches (e.g. due to limitations to obtain appropriately sized exploratory and 
confirmatory data sets in rare disease scenarios) should apply appropriate methodology and should 
be pre-specified, not envisaged post hoc.  

4. Demonstration of clinical utility  

• The impact on diagnostic thinking, patient management and clinical outcome must be specified and 
justified.  

5. Standard of truth / surrogate standard of truth  

• In case an assessment of the standard of truth (true status of the patient or the value of the 
measurement) is not possible or unethical (e.g. a required measure is too invasive), a surrogate 
standard of truth must be established and justified.  

6. Appropriateness of the analytical platform  

• The analytical platform, as intended for use, must be validated, (vii) clearly define thresholds for 
clinical decision points. 

• Technical and performance characteristics must be specified and justified with respect to the 
Context of Use (CoU), including (iv) limits of detection/quantitation. 

• The diagnostic performance must be (v) stable and reproducible across patients and across time. 

Also, epidemiologic aspects may become important, for instance (i) Knowledge of the normal 
distribution of a biomarker across different demographics. 

At the current time, few of these criteria are fulfilled by current proteomic, metabolomic or lipidomic 
biomarkers. Increasingly challenging from a regulatory perspective is the trend towards biomarker 
panels for identification of relevant patient populations. This includes determining the clinical value of 
the measured biomarker. This is partly driven by the difficulty of identifying a single biomarker of 
sufficient specificity and sensitivity for clinical utility. How will the relative components of each of the 
biomarkers be assessed? How will the relative changes over time of the individual components be 
understood? Maybe less challenging, but important is, to ensure robust and reliable diagnostic 
performance to guaranty the consistency of analytical results across laboratories.  

EMA qualification advice4 for novel technologies is a process by which applicants can obtain a CHMP 
opinion on the acceptability of a specific use of a method, such as the use of a novel biomarker. The 
link below provides details of some recent advice procedures, which include examples like plasma 

 
4 http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000319.jsp 

http://www.ema.europa.eu/ema/index.jsp?curl=pages/special_topics/general/general_content_000349.jsp&mid=WC0b01ac05800baedb
http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000319.jsp
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fibrinogen as a medicine’s development tool (prognostic biomarker), to identify COPD subjects at high 
risk for all-cause mortality or COPD exacerbations for inclusion in interventional clinical trials. Many of 
the issues raised during this advice procedure illustrate the complexities and challenges for the 
identification of truly prognostic biomarkers. 

http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_
000319.jsp  

 

5.10.  Bioinformatics, algorithms, modelling and statistics 

Bioanalytical Big Data analysis (i.e. models and algorithms) are subject to the growing field of data 
science which combines methods from various disciplines such as biostatistics, mathematical modelling 
and simulation, bioinformatics and computer science including data-integration, machine learning and 
high-performance computing.  

The workflow of Big Data analysis approaches can be generally divided in two steps: 

Big Data analyses are typically preceded Data Processing to integrate data from different sources 
followed by Data Analysis & Interpretation: Based on these pre-processed (and curated) data 
inferences can be drawn using methods from biostatistics, mathematical modelling and simulation, 
bioinformatics and machine learning. While data processing can largely be automated, model and 
method development, validation and interpretation strongly rely on expert knowledge of data 
scientists. 

Initiatives, such as Elixir, provide open label bioinformatics applications addressing numerous scientific 
problems and tasks. Thus, for instance, for proteomics, Elixir offers within its data platform 
bioinformatics applications addressing metadata documentation, standardisation, annotation and data 
management. The “tools platform” offers open user-friendly quantification algorithms and tools, along 
with direct coupling to dedicated and performant statistical analysis. The “interoperability platform” 
supports “multi-omics” approaches. The “compute platform” includes workflow analysis pipelines and 
activities related to the development of cloud infrastructures. Further important integrative activities 
are training and the quality control (QC) activities which are essential for both, data processing as well 
as for data analysis & interpretation. QC has historically not been as well developed in proteomics as 
in, for instance, the more established small molecule mass spectrometry. Especially for regulatory use 
within medicines development, QC activities are substantial to ensure safety and efficacy of the 
particular medicinal product or treatment strategies. Elixir is focused on activities to develop automatic 
and reliable pipelines for QC of proteomics data at different levels. 

The analysis and biological interpretation of proteomics and other omics data can be challenging.  
Systems biology develops innovative network-based methods, which allow an integrated analysis e.g. 
of protein-protein interactions  using e.g. functional similarity measurements of interacting proteins 
reflecting biological processes of investigated cells (Boyanova et al. 2014). Other approaches apply 
functional enrichment analyses to provide biological context within a protein network or densely 
connected subnetworks (Molecular Complex Detection (MCODE) analysis) and use the accumulative 
hypergeometric probability function to assign statistical significance to functional categories (Tripathi et 
al. 2015). An integrated network approach not only allows a detailed analysis of proteome networks 
but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper 
insights into the underlying cellular processes of the investigated system.  

By applying Big Data strategies, initiatives like Virtual Liver Network (https://fair-
dom.org/partners/virtual-liver-network-vln/) or the PlateletWeb 

http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000319.jsp
http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000319.jsp
https://fair-dom.org/partners/virtual-liver-network-vln/
https://fair-dom.org/partners/virtual-liver-network-vln/
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(http://plateletweb.bioapps.biozentrum.uni-wuerzburg.de/plateletweb.php) aim to achieve insights in 
biological pathways and (patho-) physiological processes on the level of cells, organs or physiological 
pathways and functions, e.g. the immune system.  

For the development of pharmacological models, the Drug Disease Model Resources (DDMoRe) 
consortium has been created to improve the quality, efficiency and cost effectiveness of Model-
Informed Drug Discovery & Development (http://www.ddmore.eu). The DDMoRe Model Repository is 
built using the Pharmacometrics Markup Language (PharmML) and supports the Model Description 
Language (MDL) in order to facilitate the collaborative development of computational models. This is in 
line with efforts to develop standardised model descriptions such as, for example, through the systems 
biology markup language (SMBL) to allow for a databases of curated biological models 
(http://sbml.org/Main_Page; http://www.ebi.ac.uk/biomodels-main/). 

Statistical and bioinformatics methods complement each other in data sciences. Thus, efficient linkage 
between bioinformatics and biostatistics is needed for an appropriate assessment of methods and 
approaches if applied in medicines development. 

In case, “Big Data” analysis is used for regulatory purpose, the same requirements as for other 
(biostatistical) analytical methods and approaches are applicable, depending on the intended use. 

Adaptations may be necessary to fully integrate these new technologies in regulatory guidance and 
processes. However, general requirements for the qualification and validation of novel methodologies 
for medicine development are defined as described in section 5.9. 

6.  Key case study illustrating regulatory challenges 

The following key case studies were chosen as they represent relevant innovative examples of 
proteomics big data approaches using algorithm-driven big data technologies. These approaches are 
far advanced and have impact directly on the quality, safety and efficacy of the final medicinal product. 
Therefore, they are of importance in regulatory assessment. 

6.1.  Key case study: Active personalisation in therapeutic cancer 
vaccination utilizing proteomics approaches  

Personalisation in the area of cancer immunotherapy includes stratification approaches based on the 
presence of specific genomic markers that predict the clinical response of patients toward certain 
therapies such as tyrosine kinase inhibitors or monoclonal antibodies. Another strategy for 
personalised cancer immunotherapy uses therapeutic vaccination approaches such as autologous 
tumour lysates or tumour lysate-loaded dendritic cells, where the actual antigens are not known. 
Though, in fact each patient is treated with an individual product this approach has been defined as 
passive personalisation since the actual antigens remained unknown. In contrast, active 
personalisation in therapeutic cancer vaccination relies on the manufacture of an individual vaccine 
for each patient with clearly defined antigens (Britten et al. 2013). Such cancer vaccines might consist 
of a cocktail of cancer-associated antigens, which are non-mutated proteins that are either over-
expressed in tumour tissues or that are specifically expressed in tumours, while not expressed in most 
normal tissues. One approach to establish such kind of cancer vaccinations is based on synthetic 
peptides from such well-known tumour-associated antigens that can be manufactured in advance and 
can be stored as a so-called warehouse. Depending on the tumour-associated antigen expression 
profile (proteomics; measured by MS) an individual vaccine cocktail derived from the warehouse can 
be assembled for each patient. Translation of the APVAC concept into the clinical setting has now 
commenced in several consortia-driven projects recently announced: GAPVAC (http://www.gapvac.eu) 

http://sbml.org/Main_Page
http://www.ebi.ac.uk/biomodels-main/
http://www.gapvac.eu/
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(see Fig. 7), MERIT (http://www.merit-consortium.eu) and HEPAVAC (http://www.hepavac.eu) as 
outlined the key case studies selected below.  

6.2.  Key case study: HLA ligandome analysis of tumours utilising 
proteomics (ligandome)  

During recent years, mass spectrometry proteomics approaches have been developed to allow the 
isolation and identification of the HLA “ligandome” of tumour tissues (Rammensee und Singh-Jasuja 
2013). Thus, isolation and characterization of all Class I and Class II binding peptides in a given cancer 
tissue sample has become possible. Upon comparison of cancer tissue ligandomes with healthy tissue 
ligandomes, it became evident that certain peptides are overexpressed or exclusively presented in 
tumour tissue, and not on normal tissue (Kowalewski et al. 2015). Due to this cancer-specific 
presentation on HLA molecules such peptides are an ideal basis for the manufacture of personalised 
anti-cancer immunotherapies. A warehouse of peptides identified in this way can be established and 
patients be treated with personalised peptide cocktails derived from the warehouse. Depending on 
each patient’s specific HLA haplotype an individual peptide vaccination cocktail can be assembled.  

Mass spectrometry also allows the direct identification of HLA-presented neo-epitopes in individual 
cancer patients. Such neo-epitopes arise due to tumour-specific mutations in the coding regions of 
genes. In contrast to the identification of mutations by sequencing approaches (see below) the 
selection of peptides by MS relies on the actual presentation of epitopes on HLA molecules. Neo-
epitopes identified by MS can then be chemically synthesized and used as vaccines.  

Fig. 7: Workflow of the GAPVAC study; credit: Prof. Dr. Stefan Stevanovć, Tübingen, Germany 

 

 

http://www.merit-consortium.eu/
http://www.hepavac.eu/
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6.3.  Application of bioinformatics tools in key case study: Active 
personalisation in therapeutic cancer vaccination combining genomics and 
proteomics or “pure” epitope prediction by bioinformatics algorithm 
prioritizing the epitopes  

Another active personalisation approach relies on the identification of tumour-specific mutations 
(genomics, so-called “mutanome”) that are used to manufacture peptide or mRNA cocktails encoding 
epitopes harboring the mutations. Epitopes derived from mutations are regarded as potential targets 
for cancer immunotherapy. They are called neo-epitopes as they lack expression in any healthy tissue. 
The systematic use of mutations for vaccine approaches, however, is hampered by the uniqueness of 
the repertoire of mutations (the mutanome) in every patient's tumour. Recently, a personalised 
immunotherapy approach was introduced targeting the spectrum of individual mutations. 

‘Bioinformatics tools are used for: mutation detection by exome sequencing, selection of vaccine 
targets by solely bioinformatical prioritization of mutated epitopes predicted to be abundantly 
expressed and good MHC class I or class II binders; followed by rapid production of synthetic mRNA 
vaccines encoding multiple of these mutated epitopes (NCT02035956).  

The selection relies here based on bioinformatics algorithms as HLA ligands encompassing mutations 
that are not present in autologous benign tissue (neoepitopes) can be defined either by direct 
identification through LC-MS/MS or by epitope prediction. 

6.4.  Challenges in the use of proteomics approaches for personalised 
medicine 

The key case studies described above illustrate the challenges that need to be overcome when using 
proteomics approaches for personalised medicine. 

1) Bioanalytical method validation  

A major regulatory question when using MS-based diagnostics to identify e.g. the ligandome of a 
cancer tissue is to what extent MS as a method can sufficiently be validated for bioanalytical method 
performance metrics such as accuracy, precision, specificity, sensitivity etc. It appears that currently it 
is not possible to sufficiently validate MS-based proteomics bioanalytical methods, according to 
information available. This is considered a major hurdle in regard to the potential for MS-based 
proteomics approaches to be usable in regulatory processes especially when there is a relevant impact 
on regulatory decision-making. It appears therefore, that for the time being alternative (non-
proteomics) approaches to measure proteins are preferred.   

2) Definition of standards for databases  

For a broad application of personalised approaches, public databases are important, for example 
including information related to the ligandome profile of healthy tissues that can be compared to a 
patient’s tumour ligandome (or any other profile comparing tumour to healthy tissue). From a 
regulatory point of view, it is important to define the requirements or standards to which such 
databases should adhere, such as common data formats (e.g. CDISC) or the qualification procedures 
standards for biomarkers (CPI, see section 8.5). 

3) Regulatory challenges specific to bioanalytical Omics-based personalised approaches  

Other regulatory challenges emanate from omics-based personalised approaches. The current 
paradigm of medicinal product development starts establishing a robust manufacturing process for a 

http://cancerimmunolres.aacrjournals.org/lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT02035956&atom=%2Fcanimm%2F4%2F1_Supplement%2FIA06.atom
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single, well-defined product, followed by non-clinical studies and testing of the product in first clinical 
studies. Manufacture of individual peptide cocktails requires the establishment of a platform allowing 
the robust and consistent production of each drug product within the shortest period of time possible. 
The feasibility of such high-throughput manufacture will rely on flexible regulatory approaches such as 
adapted quality testing. Examples are stability testing and microbial testing which are time-consuming 
and need to be shortened. Preclinical pharmacological and safety testing is similarly affected. Active 
personalisation approaches and the resulting regulatory challenges have been discussed at EMA and 
have generally been viewed by EMA experts as a promising approach (Britten et al. 2013), Briefing 
Meeting Report Actively Personalised Vaccines (APVACs), EMA/88358/2012. 

7.  Applicability and Usability 

Exploratory research 

As described in previous sections, the usability of proteomics/metabolomics/lipidomics technologies in 
regulatory processes and in particular for regulatory decision-making is currently low as a result of 
important challenges that have to be overcome e.g. in relation to bioanalytical method validation and 
issues with variability in the acquired data and reproducibility of measurements. On the other hand, 
these technologies have a unique potential to establish a linkage between ‘biological’ physiological 
measures and clinical outcome. Many of the current and potential applications may lie in exploratory 
research, e.g. Biological pathway and target discovery or hypothesis generation based on causal 
associations between ‘omics’ profiles and signatures and consequential phenotypic outcomes in both 
health and disease and eventually link to drug responsiveness. 

Thus, currently the profiling investigations are focused on whole exome sequencing and/or messenger 
RNA sequencing but ultimately down the line may progress to examining protein, metabolomic or 
lipidomic signatures. However, as discussed above, methodological challenges like variability and 
complexity of relevant biological pathways remains a cause of concern, and consequently there is 
increasing interest in e.g. refining accuracy by using panels of biomarkers as opposed to a single 
biomarker; for example a panel of proteomic biomarkers which includes markers of inflammation (IL-6, 
TNF-α) and mineral and bone disorder biomarkers (OPG, OPN, OCN, FGF-23, and Fetuin-A), was found 
to be potentially more relevant than a single biomarker to detect early stages of chronic kidney disease 
(Mihai et al. 2016). This exemplifies that panels of biomarkers, in future, very likely identified by 
Bioanalytical Omics technologies selected by specific algorithm and modelling might be of highly 
relevant use in clinical settings. 

For further considerations addressing the underlying biological complexity for better understanding of 
(patho-)physiological pathways and the result of protein biomarker results see below under section 
Patient stratification. 

Digital Repositories (e.g expression Atlases) 

Established databases for proteomics data (see section 5.2.1. Proteomics data) are, for instance, the 
Global Proteome Machine Database (GPMDB), PeptideAtlas or the PRIDE database. These databases 
(expression atlases) of expression profiles of functional proteins like receptors or surface proteins in 
specific organs and tissues of humans and animals used in in-vivo models allow predictions of 
pharmacological, toxicological/adverse and immunologic effects in humans and predictions of 
interspecies comparability. As an example, a relevant initiative, again in the field of oncology, is the 
Human Pathology Atlas, a part of the Human Protein Atlas program (Uhlen et al. 2017) in which the 
global expression patterns of all protein coding genes in 33 cancer types for 9666 patients for whom 
clinical metadata existed, were compared with gene expression patterns in normal healthy tissues 
obtained from 162 individuals. What is perhaps more noteworthy is that when comparing across 
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different cancer types and location, 2375 of the prognostic genes showed opposite effects on prognosis 
depending on the cancer type and location highlighting the need to perform functional studies of 
prognostic genes. Moreover, as increasingly becoming recognised, there is an overlap of prognostic 
genes, both favourable and unfavourable, across some cancer types, for example renal, breast, lung 
and some pancreatic cancers.  From a regulatory perspective, such studies may mean that in the 
future drugs will no longer be indicated for a particular cancer based on its location but for a particular 
oncogenic marker irrespective of the origin of the tumour. 

Patient stratification 

‘Omics’ technologies also contribute to improvements in the (early) stages of medicines development 
and are in use in clinical practice.  

There are two main objectives for the application of patient stratification approaches.  

1) Improving and accelerating clinical medicines development e.g. i) for potential prediction of disease 
progression; ii) for risk stratification or as part of an enrichment strategy in a randomised trial; iii) as a 
surrogate marker for a “hard” clinical endpoint. 

2) In clinical practice, diagnostic stratification enables more specific and efficacious treatment for 
individual patients and clinical decision-making. 

In particular, the potential to accurately stratify a patient population allowing to predict the 
downstream phenotypic is a prerequisite to establish individualised / precision medicines concepts. 

For example, a number of PD-1/PD-L1 inhibitors are approved including companion diagnostics using 
PD-L1 immunohistochemistry protein biomarker assays. Several studies examining the usefulness of 
PD-L1 IHC assays have demonstrated a direct correlation of response rate to tumour PD-L1 expression 
level. However, the establishment of cutoff values is essential for appropriate clinical decision-making. 
It is required to specifying the PD-L1 expression (measured with a specific assay) defining the 
expression level the clinical benefit/risk balance is positive for the administration of a particular PD-
1/PD-L1 inhibitor in a specific indication. The cutoff values for these assays vary from as low as 1% to 
as high as 50%. To allow for comparison, sensitivity and specificity of the bioassay for a given 
malignancy were calculated based on the reported objective response rate in individuals who were 
considered to have PD-L1 positive tumours (ORR+) and that of the individuals who were considered to 
have PD-L1 negative tumours (ORR-). The sensitivity and specificity of the IHC assays are generally 
poor. The stringent application of the results of these assays may potentially exclude individuals who 
may benefit from treatment or include patients who may not benefit. Also the interchangeability of the 
current assays is likely to be a challenge, which is a regulatory challenge (Diggs und Hsueh 2017).   

The reasons for this observed low sensitivity and specificity example companion diagnostics approach 
are multifarious. Bio-analytical challenges, as discussed above, are contributing but have likely a 
generally minor impact. The mechanism of PD-L1 expression is complex. Multiple factors, intrinsic and 
extrinsic, appear to influence both, PD-L1 expression and response to treatment (Diggs und Hsueh 
2017). For instance, specific cancer mutations (e.g. BRAF mutations in melanoma) contribute to 
altered response to treatment or even altered expression of PD-L1 (e.g. mutation in KRAS in the 
tumour). Moreover, extrinsic factors like cigarette smoking or platinum-based chemotherapy can 
increase PD-L1 expression (Diggs und Hsueh 2017). 

This example underlines the limitation of current approaches driven on specific (single) biomarkers. 
New concepts, like Big Data driven analysis approaches, are required to address the underlying 
biological complexity to improve patient stratification, either for research and development of 
medicinal products or for an improved use of medicines in the clinical practice. 

 



 
Bioanalytical Omics  Page 33/45 
 

 

Design and manufacturing of personalised therapies 

As outlined in the key case study (section 6) Active personalisation in therapeutic cancer vaccination 
utilizing proteomics approaches, ‘bioanalytical omics ’ driven Big Data analysis approaches can be an 
essential tool for the selection, optimisation or design of specific active agents used and applied for 
medicinal products developed as personalised therapies. The quality as well as the efficacy and safety 
of those products is directly dependent on the accurate and reliable function of the underlying 
‘bioanalytical omics’ driven Big Data analysis approaches, therefore, the regulatory system has to 
follow the development of these new concepts and to prepare for future applications for marketing 
approvals for those kind of innovative treatments, see recommendations below. 

 

Areas of current/potential applications Benefits 

    

Exploratory research ‘Omic technologies’ are an indispensable tool 
in basic biomedicinal research and are used in 
a broad range of research approaches like 
biological pathway and target discovery or 
hypothesis generation based on causal 
associations with phenotypic outcomes  

Digital Repositories (e.g expression 
Atlases) 

Allows ‘in silico’ predictions of pharmalogical, 
toxicological/adverse and immunologic effects 
in humans and prediction of interspecies 
comparability.  

Patient stratification  

  

Two main objectives: 

Improving and accelerating clinical medicines 
development e.g. i) for potential prediction of 
disease progression; ii) for risk stratification or 
as part of an enrichment strategy in a 
randomized trial; iii) as a surrogate marker for 
a “true” clinical endpoint. 

Diagnostic stratification in order to enable 
more specific and efficacious treatment for 
individual patients and clinical decision-making 

Design and manufacturing of personalised 
therapies 

Key case study (section 6): 

Active personalisation in therapeutic cancer 
vaccination utilizing proteomics approaches  

 

8.  Conclusions 

The inherent complexity of proteomics and bioanalytical ‘omics technologies’ is a general 
challenge, which has also impact on the use of proteomics in the regulatory context. Comprehensively 
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characterising an entire proteome, for example, still poses a considerable challenge for the field. While 
the genome is relatively static, the proteome, as well as the metabolome and lipidome, are highly 
dynamic and spatial. Proteins are continually undergoing changes, e.g., binding to the cell membrane, 
interacting with partner proteins to form protein complexes, or undergoing synthesis and degradation. 
As a result, variability in proteomics sample measurements is considerable from person to person, 
across different tissues, or even within the same person. 

Bioanalytical omics technologies in principle hold great promise. Meaningful changes at the 
proteomic level are not always present at the genomic level and therefore the proteome may be a 
better predictor of physiology, especially in disease. In combination with other approaches ‘omics” 
technologies, namely metabolomics and lipidomics, can deliver a dynamic stratification of patient 
populations over time rather than a single snapshot measurement.  

There is a unique potential that ‘omics technologies’ foster and accelerate the development of new 
treatments. Thus, the development of these technologies should be supported also by the regulatory 
system by addressing of general and specific challenges listed below in order to establish a robust 
framework for innovative therapy development enabling the full benefit for patients. 

8.1.  Bioanalytical method validation 

The establishment of appropriate method validation of bioanalytical methods used in ‘bioanalytical 
omics’ approaches are required, in order to ensure reproducibility, sensitivity and specificity.  

However, approaches sufficiently tailored to the context of ‘bioanalytical omics’ techniques may be 
required, due to the complexity of the techniques used to measure. 

The current framework for bioanalytical (technical) method validation (laid out in the guidelines) 
provides the basic principles. Appropriate method validation approaches sufficiently tailored to the 
context of ‘bioanalytical omics’ techniques taking into account the complexity of the techniques used 
have to be established in order to ensure quality of results when used in regulatory processes.  

Clear guidance should be provided for the bioanalytical method validation in the context of Big Data 
`bioanalytical omics` applications, depending on the impact on diagnostic, medical or regulatory 
decisions.    

8.2.  Comprehensiveness of available data sets 

According to the 2nd recommendation of the FAIR Data Action Plan, The Open Data Mandate for 
(publicly funded) research should be made explicit in all policy. It is important that the maxim ‘as Open 
as possible, as closed as necessary’ be applied proportionately to use the genuine best efforts to share. 

A major challenge is the availability of relevant data sets to carry out comprehensive analyses of (Big) 
‘omics’ data. Commonly, starting with variability in sampling up to limitations of analytical methods, 
e.g. the stochastic differences between experiments inherent to proteomics, all these factors are 
affecting reproducibility and variability and as consequence, the comprehensiveness of data sets (see 
sections 5.3 – 5.5.). In particular in proteomics, there are significant challenges to obtain 
comprehensive data sets as the complexity of proteomics analyses leads to variation in the peptides 
and proteins identified (5.1.1 and 5.5). On top of the limited availability of data due to methodical 
analytical reasons, legal, ethical and commercial limitations exacerbate the problem. 

A major challenge is the availability of relevant data sets to carry out comprehensive analyses of (Big) 
‘omics’ data. Missing data / information may either limit capabilities to identify existing associations 
and pathways or may introduce bias leading to erroneous results and conclusions.  
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Depending on the specific development programme or the scientific questions addressed, the impact of 
these methodical limitations is variable. An adequate analysis of the completeness of available date 
and the potential impact of missing data / information has to be implemented timely during the 
development of ‘omics technologies’ projects. 

Specific guidance should be provided how the completeness of analysis, in particular the missing data / 
information has to be addressed in Big Data ‘omics’ approaches, depending on regulatory purpose the 
results are intended to be used. 

8.3.  Data Quality  

A crucial challenge associated with the use of proteomics and associated techniques in the regulatory 
and specifically the big data setting is the issue of controlling data quality. Control over data quality is 
critical on many levels in the case of proteomics data and will likely be more difficult than with other 
techniques (e.g. genomics). In addition to the issue of controlling the quality of the bioanalytical 
method itself (5.3.-5.4), the sample quality is also of crucial importance e.g. in proteomics analyses. 
Specifically, in big data analyses, samples will be derived from a variety of sources (e.g. because it 
concerns secondary use of existing samples). If low quality samples are used, the reliability of the data 
can become jeopardised. Also, prior handling of data (data analysis) may potentially be difficult to 
control from quality perspective, for example when secondary databases are used which comprise data 
derived from the results of analysing primary data.  

The usability of ‘omics technologies’ in the regulatory context is dependent on standardisation of 
quality control methodologies on all levels of the analyses, from sample quality to data analysis 
methodologies. 

The quality of the samples and the results of analysis have to be documented by providing relevant 
quality attributes via appropriate data (file) formats and data standards. Aspects relevant to quality of 
bioanalytical method validation as well as Data Processing and Data Analysis & Interpretation are 
addressed in the specific recommendations.  

It will be in the remit of regulatory networks, in Europe and globally, to define which quality levels and 
attributes will be acceptable for which regulatory purpose, depending on the impact on diagnostic, 
medical or regulatory decisions.  

8.4.  Supporting the harmonisation and sharing of data (file) formats 
(standard open file formats) 

A challenge specifically predominant in the field of “bioanalytical omics” is the management of 
heterogeneous data types and (file) formats. Defining harmonised data formats will be an important 
objective in relation to use of ‘omics’ data in the regulatory context as interoperability and availability 
of comprehensive data sets (see above) are crucial issues.  

Following the FAIR recommendation (https://zenodo.org/record/1285272) to establish an Open Data 
Mandate for (publicly funded) research, it is a crucial prerequisite to enable secondary use of ‘omics’ 
data to a broader extent. Only if data are technically accessible by using open source file formats 
including the relevant data and information (e.g. relevant metadata), the consistent implementation of 
Big Data approaches is possible. 

There are current substantial efforts towards more open file formats. For example, the HUPO-PSI (5.5) 
has made progress in this regard. 

https://zenodo.org/record/1285272
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However, in order to establish a future open data culture there is a need for an improved use of open 
source standard file formats which should be vendor independent / non-proprietary. 

Linking large numbers of heterogeneous data sources, e.g. coupling proteomics databases to different 
sources of electronic health records remains challenging.  

Robust and feasible approaches have to be established in order to link different sources of ‘omics’ data 
with different sources of clinical and non-clinical data. 

The used data (file) formats should be harmonised to the best, feasible extent. In order to establish an 
Open Data Mandate, it is crucial to identify or develop open source file formats which include the 
relevant data and information (e.g. relevant metadata). Regulatory agencies may contribute by 
providing advice which data (file) formats and / or attributes of data formats are acceptable for 
regulatory purpose. 

Guidance should be provided which data (file) formats are acceptable for which regulatory use.    

8.5.  Strengthening the development and harmonisation of data standards 

It is important to define the requirements or standards to which databases should adhere. It is 
encouraged to limit the use of data standards to the feasible minimum.  

There are general efforts and approaches as lined out in the FAIR recommendations or Critical Path 
Initiative (CPI) to harmonise the information provided via data standards.  

Suitable data standards are required to allow an appropriate integration of large scale (Big) Data sets. 
Suitable and appropriate data standards like CDISC standards should be identified and -in case this is 
necessary- adapted for the use in Big Data approaches, for instance, by establishing linkage and 
including specific common data elements. 

A main question is the validity/accuracy of the data; thus, quality attributes should be included in 
order to allow appropriate selection, analysis and interpretation of data sets. 

Data standards should be platform-independent, appropriately validated and freely available. However, 
even if harmonisation should be supported to the best extent, the complexity, particularly in the field 
of other ‘omics’ technologies, limits the feasibility to harmonise data standards rigorously. 

It is encouraged to limit the number of used data standards to the feasible minimum.  

Suitable and appropriate data standards like CDISC standards should be identified and -in case this is 
necessary- adapted for the use in Big Data approaches, for instance, by establishing linkage and 
including specific common data elements. Quality attributes should be included in order to allow 
appropriate selection, analysis and interpretation of data sets. Data standards should be platform-
independent, appropriately validated and freely available.  

Guidance should be provided which data standards are acceptable for which regulatory purpose, 
depending on the impact on diagnostic, medical or regulatory decisions.    

8.6.  Regulatory recognition of clinical relevance and prognostic / 
predictive value 

The general procedures and relevant aspects (such as the definition of the Context(s) of Use) for the 
establishment and regulatory recognition of clinical relevance and prognostic value are specified in 
Qualification of novel methodologies for drug development EMA/CHMP/SAWP/72894/2008Error! Bookmark n

ot defined.; for further explanation please refer to the section 5.9.  
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However, appropriate regulatory recognition of Big Data ‘Bioanalytical omics’ approaches will also 
challenge regulatory systems, e.g. addressing comprehensively, but feasible particular aspects of the 
endpoint selection (in case the mechanistic understanding underlying mechanisms and pathways is 
limited). If the direct assessment of the standard of truth is not possible (e.g. practical / clinical 
reasons or lack of definition of conditions intended to be diagnosed), there is the need to establish 
robust and meaningful ‘surrogate standard of truth’ – accepted by the regulatory and health care 
systems. 

It will be in the remit of the regulator network in Europe (and globally) to specify the type of evidence 
expected for each potential use of Big Data (‘omics’) approaches. 

This includes general advice provided via relevant guidelines and particular guidance provided for 
particular development projects via scientific advice and qualification advice. 

It will be in the remit of the regulator network in Europe (and globally) to specify the type of evidence 
expected for each potential use of Big Data (‘omics’) approaches. This includes general advice provided 
via relevant guidelines and particular guidance provided for particular development projects via 
scientific advice and qualification advice. 

The general procedures and context for the regulatory recognition of results derived from of Big Data 
‘omics’ approaches are provided by Qualification of novel methodologies for drug development 
established within the European regulatory network.  

Specific and targeted adaptations may be required for general questions (feeding in the development 
of relevant guidelines) or specific development projects. These adaptations should be specified by the 
regulatory agencies based on the particular methodical requirements and on practical experiences with 
the application of these new technologies.   

8.7.  Bioinformatics and statistical considerations 

The methods of data analysis used for Big Data ‘omics’ approaches (i.e. models and algorithms) are 
subject to the growing field of data science which combines methods from various disciplines such as 
biostatistics, mathematical modelling and simulation, bio-informatics and computer science including 
data-integration/machine learning and high-performance computing. 

The workflow of Big Data analysis approaches can be generally divided in two steps: 

Big Data analyses are typically preceded Data Processing to integrate data from different sources 
followed by Data Analysis & Interpretation: Based on these pre-processed (and curated) data, 
inferences can be drawn using methods from biostatistics, mathematical modelling and simulation, 
bioinformatics and machine learning. While data processing can largely be automated, model and 
method development, validation and interpretation strongly rely on expert knowledge of data 
scientists.   

Due to the requirements for assessing appropriateness of the regulatory use of Big Data processing 
and analysis/interpretation the adaptation of existing and the establishment of new regulatory 
approaches will be required. There is the challenge for the regulatory system to ensure the reliability of 
results, but also to support and encourage the development and establishment of new methodologies 
in order to strengthen and improve the development of innovative treatments. The “containerisation” 
of workflows holds great promise regarding reproducibility of data processing and data analysis 
pipelines. Case studies would be helpful to define requirements and to adapt or establish related 
regulatory workflows. 
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Big Data ‘omics’ approaches rely on innovative data science driven analytical tools (i.e. models and 
algorithms). To assess the appropriateness of the regulatory use of Big Data processing and 
analysis/interpretation, the adaptation of existing and/or the establishment of new regulatory 
approaches will be required in order to confirm diagnostic performance and clinical utility. 

There is the need of specifying (novel) requirements defining which approaches are considered as 
confirmatory. It will be in the remit of regulatory agencies to define methodical requirements for data 
analytics, depending on the impact on diagnostic, medical or regulatory decisions.  

8.8.  Knowledge /expertise gaps within the European regulatory network 

In reference to the issues discussed above, specialised expertise and experience in the field of data 
science which combines methods from various disciplines such as biostatistics, mathematical modelling 
and simulation, bioinformatics and computer science is required to address regulatory needs and 
questions in the future appropriately. Even, if highly specialised knowledge will only be required in 
certain cases, comprehensive and broad expertise will be required as in-house knowledge e.g. for an 
appropriate assessment of a marketing authorisation application. As different disciplines and 
capabilities are required to ensure the operational capacity of the regulatory system, the relevant 
capacities and resources should be implemented and cross-linked in a coordinated manner. 

The use of Big Data ‘omics’ approaches and their analysis call for new regulatory strategies and 
guidance to achieve their full beneficial potential. In order to ensure appropriate regulatory assessment 
of relevant submissions and to strengthen development capabilities, the expertise of data scientists 
from various disciplines (e.g. mathematical modelling and simulation, bioinformatics and computer 
science) will be needed. The required capacities should be built up in a collaborative effort to ensure 
efficient implementation at the European level. The result should be a regulatory network in Europe 
which is capable to address related challenges appropriately, but also to support innovation to the best 
extent, to ensure optimal results for European societies and patients.  

9.  Recommendations 
Topic Core Recommendation Reinforcing Actions Metric/ KPI 
    
Comprehensiv
eness of 
available data 
sets 
[bioanalytical 
omics] 

Implement an analysis to 
assess the completeness of 
available data and the 
potential impact of missing 
data/ information. 

• Establish a suitable framework, 
specifying the conduct of 
’omics’ Big Data analysis 
approaches. 

Increase the number of 
validated/qualified 
‘omics’ Big Data 
biomarkers. 
 
 
 

Data Quality 
[samples and 
documentation] 

Guidance should be provided 
on acceptability on Big Data 
sets to support regulatory 
decision making. 

• Quality attributes of (Big)’ data 
sets need to be defined by 
regulators including 
appropriate data (file) formats 
and data standards.  

• Quality attributes should be 
included in order to allow 
appropriate selection, analysis 
and interpretation of data sets. 

Bioanalytical 
method 
validation 

Clear guidance should be 
provided for the bioanalytical 
method validation suitable for 
the complexity of bioanalytical 
omics techniques.  

• Standards for method 
validation should be specified 
by / or in close collaboration 
with relevant competent 
authorities.  

• Quality relevant aspects of 
bioanalytical method validation 
as well as Data Processing and 
Data Analysis & Interpretation 
should be addressed in the 
specific recommendations. 
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Supporting 
the 
harmonisation 
and sharing of 
data (file) 
formats 

Data (file) formats should be 
harmonised as much as 
possible. 

• In order to establish an Open 
Data Mandate it is crucial to 
identify or develop open source 
file formats which include the 
relevant data and information 
(e.g. relevant metadata).  

• Regulatory agencies should 
contribute by providing advice 
on which data file formats and 
/ or attributes of data formats 
are acceptable for regulatory 
purpose. 

Increase the number of 
available, relevant and 
harmonised ‘omics’ Big 
Data data sets 
acceptable for regulatory 
decision making. Strengthening 

the 
development 
and 
harmonisation 
of data 
standards 

It is encouraged to limit the 
number of used data 
standards to the minimum. 

• Suitable and appropriate data 
standards e.g. CDISC should 
be identified and if necessary, 
adapted for the use in Big Data 
approaches. 

• Data standards should be 
platform-independent, 
appropriately validated and 
freely available. 

Regulatory 
recognition of 
clinical 
relevance and 
prognostic/ 
predictive 
value of omics 

Regulatory agencies should 
clearly articulate what degree 
of evidence is acceptable in 
order to support regulatory 
decision making, highlighting 
their value as prognostic 
markers. 

• In line with guidelines 
developed for genomics and 
for novel modelling approaches 
(PBPK), similar guidelines need 
to be developed for other 
omics. 

• Regulatory guidance/advice 
should be provided via 
qualification of novel 
methodologies for medicine 
development. 

The aim is to establish a 
framework of relevant 
guidance documents for 
regulatory use of Big 
Data (‘omics’) 
approaches. 
This should be 
accompanied by targeted 
and qualified scientific 
advice for particular 
projects and scientific 
questions. 
 

Bioinformatics 
and statistical 
consideration
s 

Specific guidance should be 
provided on the bioinformatic 
and statistical requirements 
for regulatory acceptability of 
Big Data analyses.  

• The adaptation of existing or 
the establishment of new 
regulatory approaches might 
be required in order to confirm 
diagnostic performance and 
clinical utility of ’omics’ Big 
Data strategies. 

Knowledge 
/expertise 
gaps within 
the European 
regulatory 
network 

To ensure appropriate 
assessment of regulatory 
submissions expertise in 
various disciplines (e.g. 
mathematical modelling and 
simulation, bioinformatics and 
computer sciences) will be 
needed. 

• Recruitment of appropriate 
expertise where none exists in 
the regulatory network. 

• The required capacities should 
be trained through a focused 
training programme on a 
European level. 

• Case studies would be an 
efficient tool to train and 
strengthen the capacities of 
the European regulatory 
network in the fields of 
computer science including 
data-integration/machine 
learning and high-performance 
computing. 

Increase the number of 
competent assessors.  
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