- 1 21 February 2014 - 2 EMA/204715/2012 # 3 Guideline on good pharmacovigilance practices (GVP) - 4 Module XVI- Risk minimisation measures: selection of tools and effectiveness - 5 indicators | Draft finalised by the Agency in collaboration with Member States and submitted to ERMS FG | 21 March 2013 | |--|------------------| | Draft agreed by ERMS FG | 27 March 2013 | | Draft adopted by Executive Director | 6 June 2013 | | Released for consultation | 7 June 2013 | | End of consultation (deadline for comments) | 5 August 2013 | | Revised draft finalised by the Agency in collaboration with Member States | 15 January 2014 | | Revised draft agreed by ERMS FG | 29 January 2014 | | Revised draft adopted by Executive Director as final* | 21 February 2014 | | Date for coming into effect* | 1 March 2014 | 6 7 8 9 This track-change version identifies the majority of changes introduced to the public consultation version of this document as the Agency's response to the comments received from the public consultation. This track-change version is published for transparency purposes and must not be taken or quoted as the final version. 10 11 12 * For this reason, the timetable above, and in particular the date of coming into effect, apply only the clean version published as final. For the final version of this module and any future updates, please see the GVP webpage of the 13 14 15 16 See websites for contact details Agency's website. European Medicines Agency www.ema.europa.eu Heads of Medicines Agencies www.hma.eu The European Medicines Agency is an agency of the European Union # **Table of contents** | 18 | XVI.A. Introduction | 3 | |----|--|-------------------------| | 19 | XVI.B. Structures and processes | 4 | | 20 | XVI.B.1. General principles | 4 | | 21 | XVI.B.2.Risk minimisation measures | 5 | | 22 | XVI.B.2.1. Educational programme | 6 | | 23 | XVI.B.2.1.1. Educational tools | 6 | | 24 | XVI.B.2.1.1.1 Educational tools targeting healthcare professionals | 7 | | 25 | XVI.B.2.1.1.2. Educational tools targeting patients and/or carers | 7 | | 26 | XVI.B.2.2 Controlled access programme | <u>8</u> 7 | | 27 | XVI.B.2.3. Other risk minimisation measures | <u>9</u> 8 | | 28 | XVI.B.2.3.1 Controlled distribution systems | <u>9</u> 8 | | 29 | XVI.B.2.3.2 Pregnancy prevention programme | <u>9</u> 8 | | 30 | XVI.B.2.3.3 Direct health care professional communication (DHPC) | 9 | | 31 | XVI.B.3. Implementation of risk minimisation measures | <u>10</u> 9 | | 32 | XVI.B.4. Effectiveness of risk minimisation measures | 10 | | 33 | XVI.B.4.1. Process indicators | <u>1211</u> | | 34 | XVI.B.4.1.1 Reaching the target population | <u>1211</u> | | 35 | XVI.B.4.1.2 Assessing clinical knowledge | <u>1211</u> | | 36 | XVI.B.4.1.3 Assessing clinical actions | 12 | | 37 | XVI.B.4.2. Outcome indicators | <u>1312</u> | | 38 | XVI.B.5. Coordination | <u>1413</u> | | 39 | XVI.B.6. Quality systems of risk minimisation measures | <u>14</u> 13 | | 40 | XVI.C. Operation of the EU regulatory network | 14 | | 41 | XVI.C.1. Roles and responsibilities in the EU for implementing additional risk min | | | 42 | measures | | | 43 | XVI.C.1.1.The European Regulatory Network | | | 44 | XVI.C.1.1.1 The European Medicines Agency | | | 45 | XVI.C.1.1.2. The Pharmacovigilance Risk Assessment Committee (PRAC) | | | 46 | XVI.C.1.1.3. Competent authorities in Member States | | | 47 | XVI.C.1.2. Marketing authorisation applicant or holder | | | 48 | XVI.C.1.3. Healthcare professionals and patients | | | 49 | XVI.C.2. Impact of risk minimisation measures effectiveness on RMP/PSUR | | | 50 | XVI.C.3. Transparency | <u>19</u> 18 | | 51 | XVI. Appendix 1. Key elements of survey methodology | 20 | | 52 | XVI.App1.1. Sampling procedures and recruitment strategy | 20 | | 53 | XVI.App1.2. Design and administration of the data collection instrument (s) | | | 54 | XVI.App1.3. Analytical approaches | 21 | | 55 | XVI.App1.4. Ethics, privacy and overall study feasibility | 22 | | 56 | | | Field Code Changed Formatted: Do not check spelling or grammar 57 58 #### XVI.A. Introduction - 60 Risk minimisation measures are public health interventions intended to prevent or reduce the - 61 occurrence of adverse reactions associated with the exposure to a medicine, or to reduce their severity - 62 or impact on the patient should adverse reactions occur. Planning and implementing risk minimisation - 63 measures and assessing their effectiveness are key elements of risk management. - 64 The guidance provided in this Module should be considered in the context of the wider GVP guidance, - in particular in conjunction with Module V. 65 - 66 Risk minimisation measures may consist of routine risk minimisation or additional risk minimisation - 67 measures. Routine risk minimisation is applicable to all medicinal products, and involves the use of the - 68 following tools, which are described in detail in Module V: - 69 the summary of product characteristics (SmPC) - the package leaflet 70 - 71 the labelling 59 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 - 72 the pack size and design - 73 the legal (prescription) status of the product The majority of sSafety concerns of a medicinal product are normally may be adequately addressed by routine risk minimisation measures (see Module V). For some risks In exceptional cases however, routine risk minimisation measures will not be sufficient for some risks and additional risk minimisation measures will be necessary to manage the risk and/or improve the risk-benefit balance of a medicinal product. This module provides particular guidance on the use of additional risk minimisation measures, including and on the selection of tools and the evaluation of their effectiveness. In specific circumstances, Hhowever, it should be understood that the principles for evaluating the effectiveness of risk minimisation measures evaluation may also be apply icable to the evaluation of routine risk minimisation measures associated with particularly where important safety concern(s) which are described in the SmPC/PIL (e.g. the SmPC provides guidance for clinical actions beyond routine standards of clinical care for either the risk itself or management of the target population) for the riskbenefit balance of the product. On the basis of the safety concerns described in the safety specification (see GVP Module V), the appropriate risk minimisation measures should be determined. Each safety concern needs to be individually considered and the selection of the most suitable risk minimisation measure should take into account the seriousness of the potential adverse reaction(s) and its severity (impact on patient), its preventability or the clinical actions required to mitigate the risk, the indication, the route of administration, the target population and the healthcare setting for the use of the product. A safety concern may be addressed using more than one risk minimisation measure, and a risk minimisation measure may address more than one safety concern. 94 Directive 2001/83/EC indicates that the marketing authorisation holder shall "monitor the outcome of 95 risk minimisation measures which are contained in the risk management plan or which are laid down 96 as conditions of the marketing authorisation pursuant to Articles 21a, 22 or 22a" (DIR Art 104 (2) (d)). 97 The Directive and Regulation (EC) No 726/2004 also include provisions for the Agency and the national 98 competent authorities to monitor the outcome of risk minimisation measures which are contained in 99 the risk management plans (RMPs) or measures that are laid down as conditions. 100 This Module provides guidance on the principles for: Field Code Changed - 101 The development and implementation of additional risk minimisation measures, including examples 102 of risk minimisation tools; - 103 The evaluation of the effectiveness of risk minimisation measures. - 104 Part XVI.B describes the development, implementation and co-ordination of risk minimisation 105 measures and the general principles of the evaluation of their effectiveness. Part XVI.C considers the 106 application of those measures and principles in the setting of the European regulatory network. - 107 In this Module, all applicable legal requirements are referenced in the way explained in the GVP 108 Introductory Cover Note and are usually identifiable by the modal verb "shall". Guidance for the implementation of legal requirements is provided using the modal verb "should". 109 ### XVI.B. Structures and processes ### XVI.B.1. General principles 110 111 112 113 114 115 116 117 118 119 - Risk minimisation measures aim to optimise the safe and effective use of a medicinal product throughout its life cycle. The benefit risk-benefit balance of a medicinal product can be improved by reducing the burden of adverse reactions or by optimising benefit, through targeted patient selection and/or exclusion and through treatment management (e.g. specific dosing regimen, relevant testing, patient follow-up, etc). Risk minimisation measures should therefore guide optimal use of a medicinal product in medical practice with the goal of supporting the provision of the right drugmedicine, at the right dose, at the right time, to the right patient, by the right prescriber, and with the right information and monitoring. - 120 The majority of safety concerns are addressed by routine risk minimisation measures (Module V). For Exceptionally, for selectedome important risks however, routine risk minimisation will not be may be 121 122 considered -insufficient and additional risk minimisation measures will be may be deemed to be necessary. In determining if additional risk minimisation activities are needed, safety
concerns should 123 124 be prioritised in terms of frequency, seriousness, severity, impact on public health and preventability. 125 Careful consideration should then be given to whether the goal can be reached with routine 126 minimisation activities, and, if not considered feasible, which additional minimisation measure(s) is(are 127 the most appropriate. -Additional risk minimisation measures should focus on the most important, 128 preventable risks and the burden of imposing additional risk minimisation should be balanced with the 129 benefit for patients. - A variety of tools are currently available for additional risk minimisation. This field is in a continuously 130 131 stage of developingment, and new tools are likely to be developed in the future. Technology advances, 132 such as interactive web-based tools may gain prominence in the future in addition to the paper-based 133 information and educational materials. - Successful implementation of additional risk minimisation measures requires contributions from all 134 135 impacted stakeholders, including marketing authorisation applicants or holders, patients and 136 healthcare professionals. The performance of these measures in healthcare systems requires 137 assessment to ensure that their objectives are fulfilled and that the measures in place are 138 proportionate taking account of the risk-benefit profile-balance of the product and the efforts required 139 of healthcare professionals and patients to implement the measures. It is therefore important to 140 ensure that additional risk minimisation measures, including assessment of their effectiveness, do not 141 introduce undue burden on the healthcare delivery system, the marketing authorisation holders, the 142 regulators, and, most importantly, on the patients. To this aim, they should have a clearly defined 143 objective relevant to the minimisation of specific risks and/or optimisation of the risk-benefit Field Code Changed balanceprofile. Clear objectives and defined measures of success with milestones need to guide the development of additional risk minimisation measures and close monitoring of both their implementation and ultimate effectiveness is necessary. The nature of the safety concern in the context of the risk-benefit balanceprofile of the product, the therapeutic need for the product, the target population and the required clinical actions for risk minimisation are factors to be considered when selecting risk minimisation tools and an implementation strategy to accomplish the desired public health outcome. The evaluation of effectiveness should facilitate early corrective actions if needed and may require modification over time. It is recognised that this is an evolving area of medical sciences with no universally agreed standards and approaches. Therefore, it is important to take advantage of any relevant elements of methodology from pharmacoepidemiology and other disciplines, such as social/behavioural sciences and qualitative research methods. The introduction of additional risk minimisation should be considered as a "programme" where specific tools, together with an implementation scheme and evaluation strategy are developed. The description of risk minimisation planmeasures, an integral part of the RMP (Module V), should therefore give appropriate consideration to the following points: - Rationale: When additional risk minimisation measure(s) are introduced R a rationale should be provided for those additional risk minimisation measures (linked to specific safety concerns); - <u>Objectives:</u> This section should set out the rationale for the <u>Each</u> proposed additional risk minimisation measure(s) which should include defined objective(s) for each of the measures proposed. There should be and a clear description of how and which safety concern is addressed with the proposed additional risk minimisation measure(s); - Description-of additional risk minimisation measure(s): This section of the RMP should provide a description describe of the selected additional risk minimisation measures, including a description of the tools that will be used and key elements of content; - Implementation-plan: This section of the RMP should provide a detailed proposal for the implementation of additional risk minimisation measures (e.g. setting and timing or frequency of intervention, details of the target audience, plan for the -distribution of educational tools; how the action will be coordinated where more than one marketing authorisation holder is involved); - Evaluation—plan: This section of the RMP should provide a detailed plan with milestones for evaluating the effectiveness of additional risk minimisation measures in process terms and in terms of overall health outcome measures (e.g. reduction of risk). ### XVI.B.2.Risk minimisation measures Risk minimisation measures aim to facilitate informed decision making to support risk minimisation when prescribing, supplying and/or using a medicinal product. While routine measures are applied to every medicinal product (see details in Module V) additional risk minimisation activities should only be proposed-introduced when they are <a href="mailto:laid-down as conditions for deemed to be essential for the safe and effective use of the medicinal product (see also XVI.C.1.). -and-these_should be science based, and-developed and provided by suitably qualified people. Additional risk minimisation measures may differ widely in purpose, design, target audience and complexity. These measures might be used to guide appropriate patient selection with the exclusion of patients where use is contraindicated, to support on-treatment monitoring relevant to important risks and/or management of an adverse reaction once detected. Additionally, specific measures may be developed to minimise the risk of medication error and/or to ensure appropriate administration of the product where it is not feasible to achieve this through the product information and labelling alone. Field Code Changed 188 If additional risk minimisation activities are requested, the rationale for the request should be clearly 189 documented, should be linked to specific safety concerns and sufficiently detailed in implementation 190 and evaluation planning. - 191 Section XVI.B.2 describes additional risk minimisation measures that should may be considered in 192 addition to the routine measures, including: - 193 Educational programmes; 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 226 227 - 194 Controlled access programmes; - 195 Other risk minimisation measures. #### XVI.B.2.1. Educational programme Many additional risk minimisation tools that can be used in an eEducational programmes are based on targeted communication with the aim to supplement the information in the summary product characteristics (SmPC) and package leaflet. Any educational material should focus on actionable goals and should provide clear and concise messages describing actions to be taken in order to prevent and minimised selected safety concerns. be clearly focused on defined risk minimisation, goals, providing clear and concise messages. The aim of an educational programme is to improve the use of a medicine by positively influencing the actions of healthcare professionals and patients towards minimising risk. Educational materials should therefore be built on the premise that there is an actionable recommendation for targeted education and that applying this measure is considered $\frac{1}{2}$ important $\frac{1}{2}$ for minimising an important risk and/or for optimisation of the risk-benefit profilebalance. In the context of an educational programme, the tools can have several different target audiences, can address more than one <u>safety</u> concern and can be delivered using a combination of tools and media (paper, audio, video, web, in-person training). Ideally, educational materials should be available in a range of formats so as to ensure that access is not limited by disability or access to the internet. When feasible the appropriateness of the tool and media for the target audience (e.g. suitable language, pictures, diagrammes, or other graphical support, etc.) should be user tested in advance, in order to optimise the success of the implementation phase. The content of any educational material should be fully aligned with the currently approved product information for a medicinal product, such as the SmPC and package leaflet, and should add rather than duplicate SmPC and package leaflet information. Promotional elements, either direct or veiled (e.g. logos, product brand colours, suggestive images and pictures, etc...), should not be included and the focus of the educational material should be on the risk(s) related to the product and the management of those risk(s) requiring additional risk minimisation. - 221 Any educational programme should be completely separated from promotional activities and contact 222 information of physicians or patients gathered through educational programmes should not be used for 223 promotional activities. - 224 The educational tools described below can be considered individually or in combinations while developing an educational programme for the purpose of additional risk minimisation. 225 #### XVI.B.2.1.1. Educational tools An educational tool should have a clearly defined scope and should include unambiguous statement(s) 228 regarding the important risk(s) of concern to be addressed with the proposed tool, the nature of such risk(s) and the specific steps to be taken by healthcare professionals and/or patients in order to 229 Guideline on good pharmacovigilance practices (GVP) - Module XVI Formatted: Do not check spelling or grammar Field Code Changed minimise those risks. This information should focus on clearly defined actions related to specific safety concerns described
in the RMP risk minimisation plan and should not be unnecessarily diluted by including information that is not immediately relevant to the safety concern and that is adequately presented in the SmPC or package leaflet. Educational tools should refer the reader to the SmPC and the package leaflet. In addition to an introductory statement that the educational material is essential to ensure the safe and effective use and appropriately manage mandatory as a condition of the marketing authorisation in order to further minimise-important selected risks, elements for inclusion in an educational tool could provide: - quidance on prescribing, including patient selection, testing and monitoring, in order to minimise important selected risks: - guidance on the management of such risks (to healthcare professionals and patients or carers); - guidance on how and where to report adverse reaction of special interest. - 243 Further guidance on the responsibilities of the applicant or marketing authorisation holder and the 244 competent authorities are provided in XVI.C.1.of this Module. #### 245 XVI.B.2.1.1.1 Educational tools targeting healthcare professionals - The aim of any educational tool targeting a healthcare professional should be to deliver specific recommendation(s) on the use (what to do) and/or contraindication(s) (what not to do) and/or 248 warnings (how to manage adverse reactions) associated with the medicine and the specific important risks needing additional risk minimisation measures, including: - 250 selection of patients; 230 232 233 234 235 236 237 238 239 240 241 242 246 247 249 253 254 255 256 258 259 260 261 262 263 264 266 268 270 265 267 257 231 - 251 treatment management such as dosage, testing and monitoring; - 252 special administration procedures, or the dispensing of a medicinal product; - details of information which needs to be given to patients. - The format of a particular tool will depend upon the message to be delivered. For example (indicative), where a number of actions are needed before writing a prescription for an individual patient, a checklist may be the most suitable format. A brochure may be more appropriate to enhance awareness of specific important risks with a focus on the early recognition and management of adverse reactions, while posters for display in certain clinical environments can include helpful treatment or dosage reference guides. Other formats may be preferable, depending on the scope of the tool. ### XVI.B.2.1.1.2. Educational tools targeting patients and/or carers The aim of tools targeting patients targeted tools should be to enhance the awareness of patients or their carers on the early signs and symptoms relevant to the early recognition of specific adverse reactions causing the need for additional risk minimisation measures and on the best course of action to be taken should any of those symptoms occur. If appropriate, a patient's educational tool could be used to provide information on the correct administration of the product and to remind the patient about an important activity, for example a diary for posology or diagnostic procedures that need to be recorded or conducted carried out and recorded by the patient and eventually discussed with healthcare professionals, to ensure that any steps required for the effective use of the product are 269 adhered to. Patient alert card Field Code Changed The aim of this tool should be to ensure that special information regarding the patient's current therapy and its <u>important</u> risks (e.g. potential <u>life-threatening</u> interactions with other therapies) is held by the patient at all times and reaches the relevant healthcare professional as appropriate. The information should be kept to the minimum necessary to convey the key minimisation message(s) and the required mitigating action, in any circumstances, including emergency. <u>Ability to carry with ease</u> (e.g. can be fitted in a wallet) <u>Portability</u> should be a key feature of this tool. ### XVI.B.2.2 Controlled access programme A controlled access programme consists of interventions seeking to control access to a medicinal product beyond the level of control ensured by routine risk minimisation measures i.e. legal status. Since a controlled access programme has large implications for all stakeholders, the use of such a programme should be limited and should be guided by a clear therapeutic need for the product based on its demonstrated benefit (e.g. it treats a serious disease without alternative therapies; it treats patients who have failed on existing therapies), the nature of the associated risk (e.g. risk is lifethreatening), and whether this risk is expected to be managed by the interventions. Therefore, econtrolled access should only be considered as a tool for minimising an important -serious risk with significant public health or individual patient impact for a product with clearly demonstrated benefits but which would not otherwise be available without -additional risk minimisation measure(s) due to the public health impact of the riska programme where patient access is contingent on fulfilling one or more requirements prior to a product being prescribed or dispensed in order to assure its safe use. Examples of requirements that need to be fulfilled before the product is prescribed and/or dispensed and/or used in a controlled access programme are listed below (they may be included individually or in combination): - Specific testing and/or examination of the patient to ensure compliance with strictly defined clinical criteria; - Prescriber, dispenser and/or patient documenting their receipt and understanding of information on the serious risk of the product; - Explicit procedures for systematic patient follow-up through enrolment in a specific data collection system e.g. patient registry; - Medicines made available for dispensing only to Pharmacies whiche are registered and approved to dispense the product. On occasions, a requirement to test or to monitor a patient in a specific way can also be used as a controlled access tool. For example, monitoring of the patient's health status, laboratory values or other characteristic (e.g. an ECG) prior to and/or during treatment, e.g. liver function tests, regular blood tests, pregnancy test (which can be part of a pregnancy prevention programme). Measures should be put in place to ensure that monitoring takes place according to the SmPC where this is critical to risk-benefit balance of the product. Since a controlled access programme has large implications for all stakeholders, the use of such a programme is likely to be driven by therapeutic need for the product based on its demonstrated benefit and the nature of the risk. Field Code Changed ### XVI.B.2.3. Other risk minimisation measures #### XVI.B.2.3.1 Controlled distribution systems - 312 A controlled distribution system refers to the set of measures implemented to ensure that the stages of - 313 the distribution chain of a medicinal product are tracked up to the prescription and/or pharmacy - 314 dispensing the product. Orders and shipments of product from a single or multiple identified - 315 distribution points in the EU facilitate traceability of the product. For instance, this sort of measures - 316 could be considered for those products controlled in each Member State under the respective national - 317 legislations about the misuse and abuse of medicines. #### XVI.B.2.3.12 Pregnancy prevention programme - 319 A pregnancy prevention programme (PPP) is a set of interventions aiming to minimise pregnancy - 320 exposure during treatment with a medicinal product with known or potential teratogenic effects. The - 321 scope of such a programme is to ensure that female patients are not pregnant when starting therapy - 322 or do not become pregnant during the course and/or soon after stopping the therapy. It could also - 323 target male patients in casewhen use of a medicinal product by the biological father might have a - 324 negative effect on pregnancy outcome. - 325 A PPP combines the use of educational tools with interventions to control appropriately access to the - 326 medicine. Therefore, the following elements should be considered individually and and/or in - 327 combination in the planning development of a PPP: - 328 Educational tools targeting healthcare professionals and patients to inform on the teratogenic risk 329 and required actions to minimise this risk e.g. guidance on the need to use more than one method 330 of contraception and quidance on different types of contraceptives; information included for the - 331 patient on how long to avoid pregnancy after treatment is stopped; information for when the male - 332 partner is treated; 310 311 318 338 339 347 - Controlled access at prescribing or dispensing level to ensure that a pregnancy test is carried out 333 - and negative results are verified by the healthcare professional before prescription or dispensing of 334 - 335 the medicinal product (and); - 336 Prescription limited to a maximum of 30 days supply; - 337 Monitoring of the programme performance; - Counselling in the event of inadvertent pregnancy and evaluation of the outcome of any accidental pregnancy. - 340 The design and implementation of a pregnancy registry (as a stand-alone activity or as part of a - 341 pregnancy prevention programme) should also be considered for universal enrolment of patients who - 342 become pregnant during treatment or within an appropriate time from the end of treatment e.g. 3 - 343 - months. Use of this systematic tool to collect pregnancy outcome information can be helpful in 344 assessing the effectiveness of the pregnancy prevention programme and/or in facilitating further - 345 characterisation of the risk, particularly in the early period post authorisation when human pregnancy - 346 data may be very limited and/or when the potential concern may be based on non-clinical data
alone. #### XVI.B.2.3.2-3 Direct health care professional communication (DHPC) 348 A direct healthcare professional communication (DHPC) is a communication intervention by which 349 important information is delivered directly to individual healthcare professionals by a marketing Field Code Changed authorisation holder or by a competent authority, to inform them of the need to take certain actions or adapt their practices in relation to a medicinal product (see Annex I). For example, a DHPC may aim at adaptingand prescribing behaviour to minimise particular risks and/or to reduce the burden of adverse reactions with a medicinal product-(Module XV). Situations where dissemination of a DHPC should be considered are detailed in Module XV. #### XVI.B.3. Implementation of risk minimisation measures 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 Additional risk minimisation measures can consist of one or more interventions that should be implemented in a sustainable way to-in a defined target audiencegroup. Careful consideration should be given to both the timing and frequency of any intervention and the procedures to reach the target population. For example, a one-off distribution of educational tools 'before launch' may be insufficient to ensure that all potential prescribers and/or users, including new prescribers and users, are reached. Additional periodic re-distribution of the tools after launch might be necessary. Conversely, educational materials required at the time of launch of a new medicinal product may no longer be necessary or relevant once it has been available for a number of years. Because risk minimisation measures serve different purposes, some measures such as alert cards, controlled access programmes and pregnancy prevention programmes, will usually apply to all future applications for the same medicinal product, whilst others, such as DHPCs and training materials, may not necessarily be needed for all future applications. The appropriateness of each measure and whether these will be required for the future applications for the same medicinal products should be carefully considered at the time of authorisation of the product (and made clear in the RMP). Careful consideration should be given to the layout and content of the educational tools to ensure a clear distinction from any promotional material distributed. Submission of educational material for review by the national competent authority should be separate from submission of promotional material and a covering letter should clearly state whether the materials are promotional or educational. Furthermore, educational tools should be distributed separately from promotional materials as a 'stand-alone' communication and it should be clearly stated that the tools are not promotional material, but rather have risk minimisation purposes. Quality assurance mechanisms should ensure that the distribution systems in place are fit for purpose and auditable. #### XVI.R.4. Fffectiveness of risk minimisation measures Evaluating the effectiveness of additional risk minimisation measures is necessary to establish whether an intervention has been effective or not, and if not then why the intervention was not succesful and which ether corrective actions are necessary. The evaluation should be performed for the additional risk minimisation tools individually and for the risk minimisation programme as a whole. Effectiveness evaluation should be conducted at the most appropriate time, accounting for time required for launch of interventions, estimated use of the product into the healthcare system and other relevant circumstances. Periodic review of the effectiveness of one or more specific tools or the overall programme, as appropriate should be also planned. Time points of particular relevance are as follows: - After initial implementation of a risk minimisation programme (e.g. within 12-18 months), in order to allow the possibility of amendments, should they be necessary; - In time for the evaluation of the renewal of a marketing authorisation; and Whenever effectiveness is evaluated, -Careful consideration should be given on the need for continuing with the additional risk minimization measure. Field Code Changed The Effectiveness evaluation should address different aspects of the risk minimisation, the process itself (i.e. to what extent the programme has been implemented as planned), its impact on knowledge and behavioral changes in the target populationaudience (i.e. the measure(s) in affecting behavioural change), and the outcome (i.e. to what extent the predefined objectives of risk minimisation were met, in the short and long term). In designing an evaluation strategy, due consideration needs to be made toward what aspects of process and outcomes can be realistically measured in order to avoid the generation of inaccurate or misleading data or placing an undue burden on the healthcare system or other stakeholders. The time of assessing each aspect of the intervention as well as setting of realistic metrics on which the effectiveness of the tool is judged, should also be carefully considered and planned within the RMP prior to initiation. To evaluate the effectiveness of additional risk minimisation measures two categories of indicators should be considered: 405 Process indicators 393 394 395 396 397 398 399 400 401 402 403 404 406 407 408 409 410 411 412 413 414 415 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 416 Outcome indicators Process indicators are necessary to gather evidence that the implementing steps of additional risk minimisation measures have been successful. These process indicators should provide insight into what extent the programme has been executed as planned and whether the intended impacts on behaviour have been observed. Implementation metrics should be identified in advance and tracked over time. The knowledge gained may be used to support corrective implementation action as needed. Assessing the implementation process can also improve understanding of the process(es) and causal mechanism(s) whereby the additional risk minimisation measure(s) did or did not lead, to the desired control of specified important risks. Outcome indicators provide an overall measure of the level of risk control that has been achieved with any risk minimisation measure in place. For example, where the objective of the an intervention is to reduce the frequency and/or severity of an adverse reaction, the ultimate measure of success will be linked to this objective. In rare circumstances when it is fully justified that the assessment of outcomes indicators is unfeasible (e.g. inadequate number of exposed patients, very rare adverse events), the effectiveness evaluation may be based exclusively on the carefull interpretration of data on process indicators. The conclusion of the evaluation may be that risk minimisation should remain unchanged or modifications are to be made to existing activities. Alternatively, the assessment could indicate that risk minimisation is insufficient and should be strengthened (e.g. through amendment of warnings or recommendations in the SmPC or package leaflet, improving the clarity of the risk minimisation advice and/or by adding additional tools or improving existing tools). Another decision may be that the risk minimisation is disproportionate or lacking a clear focus and could be reduced or simplified (e.g. by decreasing the number of tools or frequency of intervention, or by eliminating interventions proved to be non-contributory to risk minimisation). In all circumstances, the undue burden on the patient and the healthcare system should be given careful consideration. In addition to assessing the effectiveness of risk minimisation measures in managing safety concerns, it is also important to assess-monitor if the risk minimisation intervention may have had unintended (negative) consequences relevant to the public health question under consideration, either in the short and/or long term. Examples of unintended consequences may include undue burden on the healthcare system, or discontinuation of a product even if its risk-benefit balance remains positive. The legislation defines "Any studymeasuring the effectiveness of risk management measures" as a post-authorisation safety study [DIR Art 1 (15)]. Therefore, if a study is conducted to assess Field Code Changed 438 behavioural or safety outcome indicators the detailed guidance for conducting a post-authorisation 439 safety study, which is provided in Module VIII, should be followed. Such quidance does not apply to the measurement of simple process markers (e.g. distribution of the tools reaching the target 440 441 population). The ENCePP Guide on Methodological Standards in Pharmacoepidemiology should be 442 considered as appropriate. #### XVI.B.4.1. Process indicators 443 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 474 475 444 Process indicators are measures of the extent of implementation of the original plan, and/or variations 445 in its delivery. Process indicators should complement but not replace the assessment of the attainment 446 of the objectives aimed at byof the risk minimisation measures (i.e. outcome indicators). Depending on 447 the nature of the interventions various process indicators can be identified for the assessment of their 448 performance. #### XVI.B.4.1.1 Reaching the target population When risk minimisation measures involve the provision of information and guidance to healthcare professionals and/or patients by mean of educational tools, measures of distribution should be used to acquire basic information on implementation. These metrics should focus on the appropriateness of the tool for the target audience (e.g. adequate language,
pictures, diagrammes or other graphical support, etc.) or assessing whether the materials were delivered to the target audience and whether they were actually received by the target population. #### XVI.B.4.1.2 Assessing clinical knowledge In order to assess the awareness of the target audience and the level of knowledge achieved by educational interventions and/or information provision (for example via an educational programme with a goal of preventing drug exposure during pregnancythe SmPC), scientifically rigorous survey methods should be applied. Appendix I summarises key methodological aspects to be considered for the design and implementation of a survey. A survey generally includes a core of standard questions administered through telephone contact, in person interview, or self-administered through postal/electronic communication, which are repeated over time. Such an approach may be tailored to the monitoring of attitude and knowledge in a diverse sample, that includes representatives from each segment of interest in the target representative populations of healthcare professionals and/or patients. by means of appropriate pPsychometric measures should be used as appropriate. Whenever feasible Aa randomised sample and an adequate sample size should be selected. In contrast, use of advocacy groups or patient support groups to survey knowledge can be considered to be inherently biased through self-selection, and should be avoided. Appropriate attention should be given to the research objectives, study design, sample size and 472 representativeness, operational definition of dependent and independent variables, and statistical 473 analysis. Thorough consideration should also be given to the choice of the most appropriate data collection instruments (e.g. questionnaires). #### XVI.B.4.1.3 Assessing clinical actions 476 In order to evaluate the effectiveness of educational interventions and/or information provisions, not 477 only clinical knowledge but also the resulting clinical actions (i.e. prescribing behaviour) should be 1 http://www.encepp.eu Field Code Changed measured. Drug utilisation studies by means of secondary use of electronic records or through medical chart abstraction should be considered as a are valuable tool-options to quantify clinical actions, if representative of the target population and where adequate databases are accessible. The analysis of prescription records, especially when linked to other records of patients (e.g. clinical and demographic data), may allow the evaluation of prescribing behaviour, including co-prescribing of two interacting medicinal products, compliance with laboratory monitoring recommendations, as well as patient selection and monitoring. By applying appropriate statistical methods (e.g. time series analyses, survival analyses, logistic regression) to a cohort of medicines users, different aspects of prescribing or use may be assessed, which can provide insights beyond purely descriptive evidence. Careful consideration should be given to the conduct and interpretation of drug utilisation studies across European countries, including the legal status of the medicine and how it is prescribed and dispensed, since prescription patterns may reflect not only the product information and any risk minimisation intervention, but also national guidelines, aspects related to healthcare services, local medical practice, and reimbursement constraints. Such a diversity of national healthcare delivery systems across Europe may justify the conduct of a study with the same objectives in multiple countries. The study of behaviour based on data collected through surveys should only be considered when no pre-existing resources and data are available to evaluate clinical actions (i.e. conduct a drug utilisation study based on self-reported data collected in healthcare professionals and/or patients survey). #### XVI.B.4.2. Outcome indicators 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 The ultimate measures of success of a risk minimisation programme are the safety outcomes, i.e. the frequency and/or severity of adverse reactions in relation to patients' exposure to the medicine outside of an interventional study setting (i.e. non-interventional setting) and those safety outcomes should be the outcome indicator(s). Such an evaluation should involve the comparison of epidemiologic measures of outcome frequency such as incidence rate or cumulative incidence of an adverse reaction, obtained for example in the context of post-authorisation safety studies. The use of appropriate safetyrelated outcomes of interest should be considered (e.g. a surrogate endpoint such as an adequate biomarker as a substitute for a clinical endpoint) if such an approach facilitates the effectiveness evaluation. Under any approach, scientific rigour and recognised principles of epidemiologic research should always guide the assessment of the final outcome indicator of interest. Comparisons of frequency before and after the implementation of the risk minimisation measures (i.e. pre-post design) should be considered. When a pre-post design is unfeasible (e.g. risk minimisation measures are put in place at the time of initial marketing authorisation), the comparison of an outcome frequency indicator obtained post-intervention against a predefined reference value obtained from literature review, historical data, expected frequency in general population, would be acceptable (i.e. observed versus expected analysis) and should take into account any stimulated reporting, changes in patient care and/or risk minimisation measures over time. The selection of any particular reference group should be appropriately justified. Methods to measure the effectiveness of risk minimisation measure should be proportionate to the risks being minimised. As such use of Spontaneous reporting rates (i.e. number of suspected adverse reaction reports over a fixed time period) may be acceptable in the context of routine risk minimisation. Spontaneous reporting should not be considered with caution as an acceptable when estimatinge of the frequency of adverse events in the treated population, but it may be used except in very specific circumstances, for instance when the adverse reaction with the product is rare and there is a negligible background incidence of the adverse event in the general population and a strong association between treatment and the adverse event. In those circumstances when a direct measure on the risk in the treated population is not feasible, spontaneous reporting could offer an approximation of the frequency Field Code Changed of the adverse reaction in the treated population, provided that some reasonably valid data can be obtained to evaluate the reporting rate in the context of a-product use. However, the well know biases that affects reporting of suspected adverse reactions may provide misleading results. For instance, the introduction of a risk minimisation plan-measure in response to a safety issue concern detected in the post-authorisation phase of a medicinal product may raise awareness regarding selected adverse reactions which ultimately may result in an increased reporting rate. In these circumstances an analysis of spontaneous reporting may mislead to the erroneous conclusion that the intervention was ineffective. Decreasing reporting rates over time may also lead to the erroneous conclusion that the intervention was effective. #### XVI.B.5. Coordination 524 525 526 527 528 529 531 532 533 534 535 536 538 539 540 541 546 547 548 549 550 551 552 553 554 555 559 560 561 562 563 530 If several products, including medicinal products authorised according to art. 10(1) or 10(3) (herein referred to as "generics" or "hybrids", as appropriate), of the same active substance are available in a market there should be a consistent approach in the use of additional risk minimisation measures 537 coordinated and overseen by the national competent authorities. When a coordinated action for a class of products is needed a harmonised approach should be agreed if appropriate. Under these circumstances advanced planning should ensure that the effectiveness of risk minimisation measures (see XVI.B.4) can be considered for each individual product as well as for the products collectively. ### XVI.B.6. Quality systems of risk minimisation measures 542 Although many experts may be involved in developing and implementing risk minimisation measures, 543 the final responsibility for the quality, accuracy and scientific integrity of those measures and the plan describing them lies with the marketing authorisation holder and its qualified person responsible for 544 545 pharmacovigilance in the EU (QPPV). The marketing authorisation holder is responsible for updating the RMP when new information becomes available and should apply the quality principles detailed in Module I. Tracked versions of the RMP should be submitted to facilitate regulatory assessment. These records, the RMP and the associated risk management systems, as well as any documents on risk minimisation measures may be subject to The marketing authorisation holder should ensure appropriate version control of the risk minimisation tools in order to ensure that all healthcare professionals and patients receive up-to-date risk minimisation tools in a timely manner and that the tools in circulation are consistent with the approved product information. To this purpose the market authorisation holders are encouraged to keep track of the receipt ients of any risk minimisation tools. These records may be subject to audit and inspection. 556 The marketing authorisation holder should ensure that mechanisms for reporting the results of studies or analyses for evaluation of the effectiveness of risk minimisation measures are documented.
These 557 558 may be subject to audit or inspection. ### XVI.C. Operation of the EU regulatory network For centrally authorised products additional risk minimisation measures recommended by the Pharmacovigilance Risk Assessment Committee (PRAC) and agreed by the Committee for Medicinal Products for Human Use (CHMP) will become, once agreed by the European Commission, conditions for the safe and effective use of a medicinal product. Field Code Changed | 564
565
566 | Implementation of additional risk minimisation measures takes place at national level and allows Member States to tailor the required conditions and restrictions to any national legal requirements and local healthcare systems. | |---|---| | 300 | iocal nealthcare systems. | | 567
568
569
570
571
572
573 | Annex II of the CHMP opinion will outline the key elements of any additional risk minimisation measures imposed on the applicant or marketing authorisation holder as a condition for the safe and effective use of a medicinal product. An annex related to Article 127a of DIR may describe the responsibilities of national competent authorities in ensuring that the additional risk minimisation measures are implemented in the Member States in accordance with defined key elements. Further details or key elements on any additional risk minimisation measures may be included in annex 10 of the RMP (see Module V). | | 574
575
576 | For products authorised under the mutual recognition and decentralised procedure, additional risk minimisation measures may be included in the RMP or laid down as conditions of the marketing authorisation. | | 577 | In all cases, implementation of additional risk minimisation measures takes place at national level and | | 578
579 | allows Member States to tailor the required conditions and restrictions to any national legal requirements and local healthcare systems. | | 580
581 | XVI.C.1. Roles and responsibilities in the EU for implementing additional risk minimisation measures | | 582
583
584
585 | This section outlines the responsibilities of different bodies as having clear obligations. This includes the Agency and its PRAC, national competent authorities, and the applicant or marketing authorisation holder in the process of developing, implementing and evaluating additional risk minimisation measures introduced for the safe and effective use of a medicinal product in the EU. | | 586
587
588
589 | In order to respect the diversity of EU health care systems, key elements will be agreed at EU level, which need to be implemented in a coordinated manner across the Member States while providing for agreement of the detail of local implementation at national level. In circumstances where some key elements are specific for only some Member States (e.g. an activity is specifically linked to the | ### XVI.C.1.1.The European Regulatory Network ### XVI.C.1.1.1 The European Medicines Agency 590 591 592 593 598 599 600 601 602 594 The Agency shall, in collaboration with the Member States and facilitated through the PRAC, monitor 595 the outcome of risk minimisation measures contained in RMPs and of conditions referred to in points 596 (c), (ca), (cb) and (cc) of Article 9(4) or in points (a) and (b) of Article 10a(1), and in Article 14(7) and (8) of Regulation (EC) No 726/2004 [REG Art 28a(1)(a)]. 597 healthcare system of one Member State) or where additional risk minimisation measures are not imposed as a condition for marketing authorisation these shall beare included in the RMP. In monitoring the outcome of risk minimisation measures, the Agency should support the PRAC scientific assessment of the outcome of risk minimisation measures which comprise additional risk minimisation measures, through the integration of data provided by Member State resources and research activities. The PRAC will make recommendations to the CHMP or the Coordination Group -Human (CMDh), as appropriate, regarding any necessary regulatory action. Field Code Changed #### 603 XVI.C.1.1.2. The Pharmacovigilance Risk Assessment Committee (PRAC) 604 The PRAC should evaluate the outcome of risk minimisation measures, including additional risk 605 minimisation measures and make recommendations as appropriate regarding any necessary regulatory 606 action. 607 In addition to advising on the studies and measures described in the RMP, the PRAC will normally 608 assess both protocol and results of imposed post-authorisation safety studies which aim to evaluate 609 the effectiveness of risk minimisation measures (Module VIII). 610 XVI.C.1.1.3. Competent authorities in Member States 611 The national competent authorities are responsible for the oversight at national level of the 612 implementation of additional risk minimisation measures imposed as a condition of the marketing 613 authorisation for the safe and effective use of a medicinal product in the EU, irrespective of the route 614 of marketing authorisation. 615 For those risk minimisation measures introduced after the initial marketing authorisation, the national 616 competent authorities should ensure prompt consideration and agreement of the interventions with the marketing authorisation holder. 617 618 The national competent authorities assisted by the PRAC and CHMP or CMDh, as appropriate, may 619 facilitate harmonising harmonization of the implementation of risk minimisation tools for generic 620 products of the same active substance. When additional risk minimisation measures are considered 621 necessary for generic medicinal product(s) based on safety concerns related to the active substance, 622 the risk minimisation measures applicable to the generic product(s) should be aligned with those for 623 the reference medicinal product. 624 Additional risk minimisation measures for hybrid products may be required in some circumstances 625 beyond those of the reference medicinal product (e.g. different formulation or route of administration 626 or incompatibility issues). To facilitate this-alignment, the PRAC may give advice on the key elements 627 that should be implemented for all concerned nationally authorised products (as conditions of their 628 marketing authorisation) and on agreement, may make these general requirements publicly available 629 to facilitate harmonised implementation at national level. 630 In addition to the above, for centrally authorised products the responsibility of the national competent 631 authorities in ensuring implementation of the risk minimisation measures as addressed to them by the 632 European Commission decision may be outlined in the annex related to Article 127a of DIR. In the 633 absence of such an annex, the general responsibilities of supervisory authorities will apply. 634 The national competent authorities should ensure that any risk minimisation tool is implemented in line 635 with the key elements outlined in the annex related to Article 127a of DIR. Additionally, the national 636 competent authorities should agree the final content, format and media of the risk minimisation tools, 637 including printed material, web-based platforms and other audio-video media, as well as the schedule 638 planning on of interventions with the applicant or marketing authorisation holder before a product is 639 introduced to their market or at any time thereafter as needed. 640 The national competent authority is autonomous in deciding appropriate national educational materials 641 and/or other risk minimisation tools as long as these are aligned with the key elements agreed at EU 642 level and as outlined in the RMP. Similarly, measurement of effectiveness of additional risk minimisation measures may be required in one member state in reason of its specific health care delivery setting or when, due to national specificities, results of the effectiveness studies cannot be Field Code Changed Formatted: Do not check spelling or grammar 643 644 645 extrapolated from studies conducted in other member states. National competent authorities in collaboration with the Agency facilitated through the PRAC shall monitor at national level the outcome of risk minimisation measures contained in RMPs and of the conditions referred to in Articles 21a, 22 or 22a of DIR [DIR Art 107h(1)(a)]. #### XVI.C.1.2. Marketing authorisation applicant or holder - The applicant or marketing authorisation holder should clearly define the objectives of any proposed additional risk minimisation measure and the indicators to assess their effectiveness. Any additional risk minimisation intervention should be developed in accordance with the general principles outlined in - 653 XVI.B.1. and XVI.B.2. and should be fully documented in the RMP (see Module V). - The measures adopted in the RMP should be implemented at national level after agreement with the national competent authorities. - The applicant or marketing authorisation holder should provide information regarding the status of implementation of additional risk minimisation measures as agreed with the national competent authorities and keep them informed of any changes, challenges or issues encountered in the implementation of the additional risk minimisation measures. Any relevant changes to the - 659 implementation of the additional risk minimisation measures. Any
relevant changes to the - 660 implementation of the tools should be agreed with the national competent authorities before - 661 implementation. 649 - In the implementation of web-based tools the applicant or marketing authorisation holder should apply requirements specific for each Member State, with particular consideration of potential issues linked to accessibility, recognisability, responsibility, and privacy and data protection. - For generic products the applicant or marketing authorisation holder should develop risk minimisation in line with the scope, content, and format of the tools used for the reference medicinal product. Scheduling and planning of interventions should be carefully coordinated in order to minimise the - 668 burden on the healthcare systems. - For generic products, the effectiveness of risk minimisation measures should be assessed by the marketing authorisation holders in close cooperation with the competent authorities. Where formal - studies are justified, joint studies for all medicinal products involved are strongly encouraged in order to minimise the burden on the healthcare systems. For instance, if a prospective cohort study is - 673 instituted, study entry should be independent from the prescription of a product with a specific - 674 invented name or marketing authorisation holder. Recording of specific product details would still be - 1074 invented frame of marketing authorisation flouer. Recording of specific product details would still be - 675 important to enable rapid identification of any new safety hazard with a particular product. - The marketing authorisation holder shall monitor the outcome of risk minimisation measures which are - 677 contained in the RMP or which are laid down as conditions of the marketing authorisation pursuant to - 678 Articles 21a, 22 or 22a of DIR [DIR Art 104(3)(d)]. General principles for effectiveness evaluation are - 679 provided in XVI.B.3.. - The applicant or marketing authorisation holder should report the evaluation of the impact of additional risk minimisation activities when updating the RMP (see V.B.11.4.). - The applicant or marketing authorisation holder should report in the Periodic Safety Update Report (PSUR) the results of the assessment of the effectiveness of risk minimisation measures which might have an impact on relevant to the safety or risk-benefit assessment (see VII.B.5.16.5. and VII.C.5.5). - The applicant or marketing authorisation holder should ensure timely communication with the competent authorities for relevant regulatory evaluation and actions, as appropriate (see also XVI.C.2. and Modules V and VII). Field Code Changed #### XVI.C.1.3. Healthcare professionals and patients - 689 Healthcare professionals and patients hold no legal obligations with respect to the implementation of the pharmacovigilance legislation. Nonetheless the cooperation of healthcare professionals and patients 690 - 691 is paramount to the success of educational programmes and/or controlled access programmes in order - 692 to optimise the risk-benefit balance. It is desirable that they give careful consideration to any - 693 additional risk minimisation measure which may be introduced for the safe and effective use of - 694 medicines. 688 695 ### XVI.C.2. Impact of risk minimisation measures effectiveness on RMP/PSUR - 696 PSUR and RMP updates should include a summary evaluation of the outcome of specific risk - minimisation measures implemented to mitigate important risks in the EU. In the RMP, the focus 697 - 698 should be on how this informs risk minimisation and/or pharmacovigilance planning. In the PSUR, - 699 there should also be evaluation of how the implemented measures impact on the safety profile and/or - 700 - risk-benefit balance of the product. In general, the focus should be on information which has emerged - 701 during the reporting period or since implementation of the most recent risk minimisation measure(s) in - the EU. Where there is parallel submission of a PSUR and a RMP update, the use of a common content 702 - Module may should be considered (GVP Module V and GVP Module VII). 703 - 704 Results of the assessment(s) of the effectiveness of risk minimisation measures should always be - 705 included in the RMP. As part of this critical evaluation, the marketing authorisation holder should make - 706 observations on factors contributing to the success or weakness of risk minimisation measures. This - 707 critical analysis may include reference to experience outside the EU, when relevant. - 708 The evaluation of the effectiveness of risk minimisation measures should focus on whether these have - 709 succeeded in minimising risk. This should be analysed using a combination of process and outcome - 710 indicators, as described in XVI.B.3.. It may be appropriate to distinguish between risk minimisation - 711 measures implemented at the time of initial marketing authorisation and those introduced later in the - 712 post-authorisation phase. - 713 When presenting the evaluation of the effectiveness of a risk minimisation measure, the following - 714 aspects should be considered: - 715 1. The evaluation should provide context by a) briefly describing the implemented risk minimisation 716 measure(s), b) defining their objective(s), and c) outlining the selected process and outcome - 717 indicators. 724 727 728 729 - 718 2. The evaluation should incorporate relevant analyses of the nature of the adverse reaction(s) - 719 including its severity and preventability. Where appropriate logistical factors which may impact on 720 clinical delivery of the risk minimisation measure should also be included. - 721 3. The evaluation should include an examination of the delivery of the risk minimisation measures in 722 routine clinical practice, including any deviation from the original plan. Such an evaluation may - 723 include the results of drug utilisation studies. - 4. Outcome indicators (i.e. adverse reaction frequency and/or severity; other safety-related outcomes) should normally be the key endpoint when assessing the attainment of risk - 725 726 minimisation measures objectives. - Proposals for changes to enhance risk management should be presented in the regional section - appendix (VII.C.5.) of the PSUR. The RMPrisk minimisation plan should be updated to take account of - emerging information on the effectiveness of risk minimisation measures. Field Code Changed In general, generic products are exempt from routine PSUR reporting in the EU. The frequency of RMP updates should be proportionate to the risks of the product. In general, the focus of RMP updates should be on the risk minimisation plan-measures and in providing updates on the implementation of risk minimisationthose measures where applicable. Where a limited number of modules have been updated, the impacted modules should be clearly highlighted in the cover letter to the submission. If there is a consequential change to the summary RMP, this should also be highlighted in the cover letter. Changes to the product information should not be proposed via a standalone RMP update but rather a variation application should be submitted. and the proposed changes captured in the A PSUR can also result directly in an update to product information (if PSURs are being submitted by the marketing authorisation holder for a given generic product). #### XVI.C.3. Transparency 730 731 732 733 734 735 736 737 738 739 740 763 764 765 766 768 - 741 Procedures should be in place to ensure full transparency of relevant information pertaining to the risk 742 minimisation measures in place for the concerned medicinal products. - 743 In accordance with Article 106 of Directive 2001/83/EC and Article 26 of Regulation (EC) No 726/2004, - 744 the Agency and national competent authorities shall make publicly available public assessment reports - 745 for medicinal products, as well as summaries of RMPs (Commission Implementing Regulation (EU) No - 746 520/2012, [IR Art 31], including risk minimisation measures therein described. - 747 For centrally authorised products the Agency shall make public: - a summary of the risk management plan [REG Art 26(1)(c)], with specific focus on risk 748 749 minimisation activities described therein [IR Art 31.1]; - 750 the European Public Assessment Report (EPAR) that includes any conditions of the marketing 751 authorisation, such as additional risk minimisation measures [REG Art 26(1)(j)]. - 752 By means of the national medicines web-portals, the Member States shall make publicly available at 753 least the following: - 754 public assessment report; this shall include a summary written in a manner that is understandable 755 to the public [DIR Art 21(4), Art 106(a)]; - summary of product characteristics and package leaflets [DIR Art 21(3), Art 106(b)]; 756 - 757 conditions of the marketing authorisation together with any deadlines for the fulfilment of those 758 conditions [DIR Art 21(3)]; - 759 summaries of risk management plans [DIR Art 106(c)]; with specific focus on risk minimisation activities described therein [IR Art 31.1]. 760 - 761 To promote public health, it is recommended that the Agency and the national competent authorities 762 make the following information available via their websites: - details of additional risk minimisation measures required as a condition of the marketing authorisation (e.g. when risk communication tools consist of printed material, a copy is provided or whenever possible, provision of electronic access to the educational material, patient card, check lists or other risk minimisation tools is advised): - 767 details of disease or substance registries requested as part of a restricted distribution system. Guideline on good pharmacovigilance practices (GVP) - Module XVI Field Code Changed Formatted: Do not check spelling or grammar ## XVI._Appendix 1. Key elements of survey methodology Surveys are systematic methods of collecting
primary data directly from a sample of participants from a larger population. These are conducted in order to characterize the larger population and may be cross-sectional (one-time only) or longitudinal (repeated over time)cross-sectional studies involving primary data collection form individual participants. 774 In the context of the evaluation of the effectiveness of risk minimisation measures a survey can be 775 conducted to evaluate understanding, knowledge and behaviour resulting from educational 776 interventions in a specified target population with respect to the safety and risk management of a 777 medicinal product. The survey methodology might not be the most appropriate approach for the evaluation of behaviour, since surveys collect and analyse self-reported data from healthcare professionals and patients. Furthermore, participation in a survey in itself may introduce behaviour changes or may not be representative of the target users given that participation is more likely amongst engaged healthcare professionals and/or more motivated or educated individualshealth conscious patients. 783 At-As a minimum, the following elements should be considered in the design and implementation of a 784 survey in order to minimise potential biases and to optimise the generalisability of the results to the 785 intended population: - 786 1. Sampling procedures and recruitment strategy; - 787 2. Design and administration of the data collection instrument (s); - 788 3. Analytical approaches; 769 770 771 772 773 778 779 780 781 782 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 789 4. Ethics, privacy, and overall feasibility of a study. ## XVI.App1.1. Sampling procedures and recruitment strategy In any survey, the sampling frame and recruitment of participants may be subject to selection bias leading to a study population that is not similar to, or representative of, the intended population in one or more aspects. Furthermore, it should be considered that a bias cannot be eliminated only by increasing the sample frame, sample size and response rate. Bias can be minimized by selecting the optimal sampling frame, taking into account age, sex, geographical distribution and additional characteristics of the study population. Bias can also be minimized by assuring the sample contains appropriate diversity to allow stratification of results by key population characteristics (e.g., by oversampling a small but important subgroup) selection bias cannot be removed by an increase of the sample frame, the sample size or the response rate. Key elements to be considered in the sampling frame include age, gender, geographical distribution, and additional characteristics of the study population. For example, in a physician survey, the strategy for randomly selecting the study sample should consider whether a general random sample would be sufficient or if the sample should be stratified by key characteristics such as specialty, type of practice (e.g., primary care, specialist ward, academic institution) For instance, the sampling approach for a physician's survey should consider specialty, type of practice (e.g. primary care, specialist ward, academic institution), length of professional experience, frequency of prescribing the product of interest and ideally should be randomised. In a patient's survey, income and education, medical condition(s), chronic vs acute use, should be accounted for considered. In addition to the overall representativeness of the target population the recruitment strategy of a survey should give careful consideration of the potential recruitment sources. For the recruitment of Field Code Changed healthcare professionals, sponsor lists, web panels, professional and learned societies may represent a 812 feasible approaches. However, their representativeness for the intended target population of physicians needs to be carefully reviewed for each study. For patient recruitment the relevant clinical setting, existing web-panels, and patient advocacy groups should be considered. A recruitment strategy should be designed while accounting for the chances of achieving accurate and complete data collection. Efforts should be made to document the proportion of non-responders and their characteristics to evaluate potential influences on the representativeness of the sample. ### XVI.App1.2. Design and administration of the data collection instrument (s) Data collection approaches in a survey may vary from in-person interview, testing, and measurement or collection of biological samples as for routine clinical practice, to telephone interview, web-based or paper-based questionnaires..., a Audio computer-assisted self-interviewing (A-CASI), interactive voice response systems (IVRS), or mixed mode approaches are may also be appropriate. The choice of the most suitable data collection approach will depend on the target population characteristics, the disease and the treatment characteristics and the inclusion and exclusion criteria of the studydata to be collected. Each data collection approach will require the ad hoc design of one or more specific instruments. 826 827 Nonetheless general design considerations that may apply to all instruments include the following: - Burden to participant: e.g. length or duration, cognitive burden, sensitivity to participant; - 829 Clarity and sequence of questions: e.g. use of unambiguous language, minimising assumptions, 830 starting with the most important questions and leaving sensitive questions until later; - 831 Completeness of responses: e.g. structure questions in order to lead to a single unambiguous 832 answer, allow for choices such as "unknown" or "don't know"; - 833 Layout of data collection instrument: e.g. clear flow, technology-assisted guides (avoid patterns, 834 reminders for non-response and visual images); - 835 Testing and revision of instrument: e.g. formal testing using cognitive pre-testing such as one-to-836 one interviews, probing questions, interview guide or trained interviewer, and "think aloud" 837 process; - Incentives to improve response rate: e.g. aggregated data are fed back aggregated data to the survey participants. ### XVI.App1.3. Analytical approaches - The key analytical elements of a survey should include: - 842 Descriptive statistics, such as: 811 813 814 815 816 817 818 819 820 821 822 823 824 825 828 838 839 840 841 843 845 846 848 - The percentage of participants responding correctly to knowledge questions; - 844 Stratification by selected variable; - Data on no_-response or incomplete response. - Comparison of responders and non-responders characteristics (if data available). - Comparison of responders and overall target population characteristics. 847 - When survey results are weighted, the following key points should be considered: Field Code Changed | 850 | Differences in response rates. | |---------------------------------|---| | 851 | Post-stratification weighting to the external population. | | 852 | • Clustering. | | 853 | Examples of stratified analyses of physician's survey include the following: | | 854 | Specialty of physician; | | 855 | Geographic location; | | 856 | Receipt of any educational material; | | 857 | Volume of prescribing. | | 858 | XVI.App1.4. Ethics, privacy and overall study feasibility | | 859
860
861
862
863 | Ethical <u>and data privacy</u> requirements are not harmonised across EU Member States, with notable differences in national (or regional) processes. <u>National (or regional) differences may exist regarding the appropriateness of providing incentives to survey participants. There may also be privacy considerations in allowing contact with physicians based on a prescriber list that is held by a <u>pharmaceutical company</u>.</u> | | 864
865 | The overall feasibility assessment of a study is a key step in the successful implementation of a survey. For clinical-based data collection, Kkey elements of such an assessment include: | | 866
867 | Gathering information on site and characteristics of study population (patients or healthcare
professionals); | | 868
869
870 | Estimating reasonable study sample size, the number of sites required to achieve the sample size,
and approximate length of the data collection period (e.g. based on estimated patient volume,
frequency of patient visits, and expected patient response rate); | | 871 | Evaluating site resources and interest in the study. | Key elements of a feasibility assessment may be different for other study designs (e.g. web-based Differences in selection probabilities (e.g. if certain subgroups were over-sampled). 849 872 873 Field Code Changed Formatted: Do not check spelling or grammar recruitment and data collection) and for physician assessments.