

Curriculum Vitae

Personal information Asimina Zisi

Work experience

- 1. Employer: Swedish Medical Products Agency
 - Start date: 022023
 - End date:
 - Position: Assessor
 - Activities: Clinical Assessor in the fields of Oncology, Hematology and Dermatology
 - Country: Sweden
- 2. Employer: Karolinska Institutet
 - Start date: 102022 End date: 012023

 - Position: Post_doctoral Researcher Activities: Worked with drug repurposing candidates for cancer therapy, characterizing new mechanistic implications.
 - Country: Sweden

Education and training

- 1. Subject: Karolinska Institute
 - Start date: 092017 End date: 102022

 - Qualification: Ph.D. in Medicine
 Organisation: Investigated Ribosome Biogenesis as a molecular target for cancer therapy, leading to the discovery, design and/or characterization of small_molecule inhibitors, identifying susceptible cancer types such as Glioblastoma, and detecting combinatorial treatments with Receptor Tyrosine Kinase Inhibitors to prevent resistance development. Other projects included the identification of unexplored and druggable enzymatic targets important for cancer cell growth, as well as the study of cancer treatments focused on the p53_MDM2 axis. Thesis: RNA Polymerase I Inhibition: Mechanism and Exploitation in Cancer Treatment
- Country: Sweden 2. Subject: Uppsala University
- - Start date: 082015 End date: 052017

 - Qualification: Master of Science in Medical Research Organisation: Subject: Infection and Cancer Biology, Drug Design and Development
 - Country: Sweden
- 3. Subject: Aristotle University of Thessaloniki
 Start date: 092010
 - End date: 062015
 - Qualification: Diploma in Pharmacy (PharmD)
 Organisation: Perfomed research on cutaneous antiseptics and antibiotic_loaded dressings
 - for wound healing applications.

 Country: Greece

Additional information

Publications

A. Zisi, D.C. Kanellis, S. Moussaud, et al. (2022) Small molecule_mediated disruption of ribosome biogenesis synergizes with FGFR inhibitors to suppress glioma cell growth, Neuro_Oncology, noac286. DOI: 10.1093/neuonc/noac286 A. Zisi, J. Bartek, M.S. Linström. (2022) Targeting Ribosome Biogenesis in Cancer: Lessons Learned and Way Forward. Cancers, 14, 2126. DOI: 10.3390/cancers14092126 D.C. Kanellis, J.A. Espinoza, A. Zisi, et al. (2021) The exon_junction complex helicase eIF4A3 controls cell fate via coordinated regulation of A. Zisi, et al. (2021) The exon_junction complex helicase e1r4A3 controls cell rate via coordinated regulation or ribosome biogenesis and translational output. Science Advances. 7(32):eabf7561. DOI: 10.1126/sciadv.abf7561 J.A. Espinoza, A. Zisi, D.C. Kanellis, et al. (2020) The antimalarial drug amodiaquine stabilizes p53 through ribosome biogenesis stress, independently of its autophagy_inhibitory activity. Cell Death Differ 27, 773–789. DOI: 10.1038/s41418_019_0387_5 P. Siafaka, A. Zisi, M. Exindari, et al. (2016) Porous dressings of modified chitosan with poly(2_hydroxyethyl acrylate) for topical wound delivery of levofloxacin. Carbohydrate Polymers, 143, 90_99. DOI: 10.1016/j.carbpol.2016.02.009 A. Zisi, M. Exindari, E. Siska, G. Koliakos. (2018) Iodine_lithium_alpha_dextrin (ILoD) against Staphylococcus aureus skin infections: a comparative study of in_vitro bactericidal activity and cytotoxicity between ILoD and povidose; indine_lownal.cf. Hospital Infections. 98(2). 124.140. DOI: cytotoxicity between ILaD and povidone_iodine. Journal of Hospital Infection, 98(2), 134_140. DOI: 10.1016/j.jhin.2017.07.013.

Projects

Memberships

Other Relevant Information